
i.MX 8M Plus BSP Manual PD22.1.1

PHYTEC Messtechnik GmbH

Dec 02, 2024

CONTENTS

1 Supported Hardware 3
1.1 phyBOARD-Pollux Components . 3

2 Getting Started 5
2.1 Get the Image . 5
2.2 Write the Image to SD Card . 5
2.3 First Start-up . 6

3 Building the BSP 9
3.1 Basic Set-Up . 9
3.2 Get the BSP . 9

4 Installing the OS 13
4.1 Bootmode Switch (S3) . 13
4.2 Flash eMMC . 14
4.3 Flash SPI NOR Flash . 20
4.4 RAUC . 22

5 Development 23
5.1 Host Network Preparation . 23
5.2 Booting the Kernel from a Network . 25
5.3 Working with UUU-Tool . 26
5.4 Standalone Build preparation . 28
5.5 U-Boot standalone build . 29
5.6 Kernel standalone build . 31
5.7 Accessing the Development states . 32
5.8 Accessing the Latest Upstream Support . 33
5.9 Format SD-Card . 33

6 Device Tree (DT) 41
6.1 Introduction . 41
6.2 PHYTEC i.MX 8M Plus BSP Device Tree Concept . 41

7 Accessing Peripherals 45
7.1 i.MX 8M Plus Pin Muxing . 45
7.2 RS232/RS485 . 46
7.3 Network . 47
7.4 SD/MMC Card . 52
7.5 eMMC Devices . 53
7.6 SPI Master . 61
7.7 GPIOs . 63

i

7.8 LEDs . 65
7.9 I²C Bus . 65
7.10 EEPROM . 65
7.11 RTC . 67
7.12 USB Host Controller . 68
7.13 CAN FD . 68
7.14 PCIe . 70
7.15 Audio . 72
7.16 Video . 74
7.17 Display . 75
7.18 Power Management . 77
7.19 Thermal Management . 79
7.20 Watchdog . 81
7.21 snvs Power Key . 81
7.22 NPU . 81
7.23 ISP . 82
7.24 On-Chip OTP Controller (OCOTP_CTRL) - eFuses . 82

8 i.MX 8M Plus M7 Core 85
8.1 Getting the Firmware Examples . 85
8.2 Running M7 Core Examples . 86

9 BSP Extensions 89
9.1 Chromium . 89

ii

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

i.MX 8M Plus BSP Manual
Document Title i.MX 8M Plus BSP Manual
Document Type BSP Manual
Yocto Manual
Release Date 2023/05/25
Is Branch of i.MX 8M Plus BSP Manual

The table below shows the Compatible BSPs for this manual:

Compatible BSPs BSP Release Type BSP Release Date BSP Status
BSP-Yocto-NXP-i.MX8MP-PD22.1.1 Minor 2023/05/23 Released

This BSP manual guides you through the installation and creation steps for the Board Support Package
(BSP) and describes how to handle the interfaces for the phyCORE-i.MX8M Plus Kit. Furthermore,
this document describes how to create BSP images from the source code. This is useful for those who need
to change the default image and need a way to implement these changes in a simple and reproducible way.
Further, some sections of this manual require executing commands on a personal computer (host). Any and
all of these commands are assumed to be executed on a Linux Operating System.

Note

This document contains code examples that describe the communication with the board over the serial
shell. The code examples lines begin with “host:~$”, “target:~$” or “u-boot=>”. This describes where
the commands are to be executed. Only after these keywords must the actual command be copied.

PHYTEC provides a variety of hardware and software documentation for all of our products. This includes
any or all of the following:

• QS Guide: A short guide on how to set up and boot a phyCORE board along with brief informationon
building a BSP, the device tree, and accessing peripherals.

• Hardware Manual: A detailed description of the System on Module and accompanying carrierboard.

• Yocto Guide: A comprehensive guide for the Yocto version the phyCORE uses. This guide contains
an overview of Yocto; introducing, installing, and customizing the PHYTEC BSP; how to work with
programs like Poky and Bitbake; and much more.

• BSP Manual: A manual specific to the BSP version of the phyCORE. Information such as how to
build the BSP, booting, updating software, device tree, and accessing peripherals can be found here.

• Development Environment Guide: This guide shows how to work with the Virtual Machine (VM)
Host PHYTEC has developed and prepared to run various Development Environments. There are
detailed step-by-step instructions for Eclipse and Qt Creator, which are included in the VM. There are
instructions for running demo projects for these programs on a phyCORE product as well. Information
on how to build a Linux host PC yourself is also a part of this guide.

• Pin Muxing Table: phyCORE SOMs have an accompanying pin table (in Excel format). This table
will show the complete default signal path, from the processor to the carrier board. The default device
tree muxing option will also be included. This gives a developer all the information needed in one
location to make muxing changes and design options when developing a specialized carrier board or
adapting a PHYTEC phyCORE SOM to an application.

CONTENTS 1

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

On top of these standard manuals and guides, PHYTEC will also provide Product Change Notifications,
Application Notes, and Technical Notes. These will be done on a case-by-case basis. Most of the documen-
tation can be found on the https://www.phytec.de/produkte/system-on-modules/phycore-imx-8m-plus/
#downloads of our product.

CONTENTS 2

https://www.phytec.de/produkte/system-on-modules/phycore-imx-8m-plus/#downloads
https://www.phytec.de/produkte/system-on-modules/phycore-imx-8m-plus/#downloads

CHAPTER

ONE

SUPPORTED HARDWARE

On our web page, you can see all supported Machines with the available Article Numbers for this release:
BSP-Yocto-NXP-i.MX8MP-PD22.1.1 download.

If you choose a specific Machine Name in the section Supported Machines, you can see which Article
Numbers are available under this machine and also a short description of the hardware information. In case
you only have the Article Number of your hardware, you can leave the Machine Name drop-down menu
empty and only choose your Article Number. Now it should show you the necessary Machine Name for
your specific hardware

1.1 phyBOARD-Pollux Components

Fig. 1: phyBOARD-Pollux Components (top)

3

https://www.phytec.de/bsp-download/?bsp=BSP-Yocto-NXP-i.MX8MP-PD22.1.1

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

Fig. 2: phyBOARD-Pollux Components (bottom)

Supported Hardware 4

CHAPTER

TWO

GETTING STARTED

The phyCORE-i.MX8M Plus Kit is shipped with a pre-flashed SD card. It contains the phytec-qt5demo-
image and can be used directly as a boot source. The eMMC is programmed with only a U-boot by default.
You can get all sources from the PHYTEC download server. This chapter explains how to flash a BSP image
to SD card and how to start the board.

2.1 Get the Image
The WIC image contains all BSP files in several, correctly pre-formatted partitions and can be copied to
an SD card easily using the single Linux command dd. It can be built by Yocto or downloaded from the
PHYTEC download server.

Get the WIC file from the download server:

host:~$ wget https://download.phytec.de/Software/Linux/BSP-Yocto-i.MX8MP/BSP-Yocto-NXP-i.MX8MP-
↪→PD22.1.1/images/ampliphy-vendor-xwayland/phyboard-pollux-imx8mp-3/phytec-qt5demo-image-
↪→phyboard-pollux-imx8mp-3.wic

2.2 Write the Image to SD Card

Warning

To create your bootable SD card with the dd command, you must have root privileges. Be very careful
when specifying the destination device with dd! All files on the selected destination device will be erased
immediately without any further query!

Selecting the wrong device may result in data loss and e.g. could erase your currently running system!

To create your bootable SD card, you must first find the correct device name of your SD card and possible
partitions. Unmount any mounted partitions before you start copying the image to the SD card.

1. In order to get the correct device name, remove your SD card and execute:

host$ lsblk

2. Now insert your SD card and execute the command again:

host$ lsblk

3. Compare the two outputs to find the new device names listed in the second output. These are the
device names of the SD card (device and partitions if the SD card was formatted).

5

https://download.phytec.de/Software/Linux/BSP-Yocto-i.MX8MP/

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

4. In order to verify the device names being found, execute the command sudo dmesg. Within the last
lines of its output, you should also find the device names, e.g. /dev/sde or /dev/mmcblk0 (depending
on your system).

Alternatively, you may use a graphical program of your choice, like GNOME Disks or KDE Partition Man-
ager, to find the correct device.

Now that you have the correct device name, e.g. /dev/sde, you can see the partitions which must be un-
mounted if the SD card is formatted. In this case, you will also find the device name with an appended
number (e.g. /dev/sde1) in the output. These represent the partitions. Some Linux distributions automati-
cally mount partitions when the device gets plugged in. Before writing, however, these need to be unmounted
to avoid data corruption.

• Unmount all partitions, e.g.:

host$ sudo umount /dev/sde1

• After having unmounted all partitions, you can create your bootable SD card:

host$ sudo dd if=<IMAGENAME>-<MACHINE>.wic of=/dev/sdX bs=1M conv=fsync status=progress

Again, make sure to replace /dev/sdX with your actual device name found previously.

The parameter conv=fsync forces a sync operation on the device before dd returns. This ensures that
all blocks are written to the SD card and none are left in memory. The parameter status=progress
will print out information on how much data is and still has to be copied until it is finished.

An alternative and much faster way to prepare an SD card can be done by using bmap-tools from Intel.
Yocto automatically creates a block map file (<IMAGENAME>-<MACHINE>.wic.bmap) for the WIC image that
describes the image content and includes checksums for data integrity. bmaptool is packaged by various
Linux distributions. For Debian-based systems install it by issuing:

host$ sudo apt install bmap-tools

Flash a WIC image to SD card by calling:

host$ bmaptool copy <IMAGENAME>-<MACHINE>.wic /dev/<your_device>

Warning

bmaptool only overwrites the areas of an SD card where image data is located. This means that a
previously written U-Boot environment may still be available after writing the image.

2.3 First Start-up
• To boot from an SD card, bootmode switch (S3) needs to be set to the following position:

Getting Started 6

https://apps.gnome.org/en/DiskUtility/
https://apps.kde.org/partitionmanager/
https://apps.kde.org/partitionmanager/
https://github.com/intel/bmap-tools

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

• Insert the SD card

• Connect the target and the host with mirco USB on (X1) debug USB

• Power up the board

Getting Started 7

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

Getting Started 8

CHAPTER

THREE

BUILDING THE BSP

This section will guide you through the general build process of the i.MX 8M Plus BSP using Yocto and the
phyLinux script. For more information about our meta-layer or Yocto in general visit: L-813e.A12 Yocto
Reference Manual (Hardknott).

3.1 Basic Set-Up
If you have never created a Phytec BSP with Yocto on your computer, you should take a closer look at the
chapter BSP Workspace Installation in the L-813e.A12 Yocto Reference Manual (Hardknott).

3.2 Get the BSP
There are two ways to get the BSP sources. You can download the complete BSP sources from our download
page: BSP-Yocto-IMX8MP; or you can fetch and build it yourself with Yocto. This is particularly useful if
you want to make customizations.

The phyLinux script is a basic management tool for PHYTEC Yocto BSP releases written in Python. It is
mainly a helper to get started with the BSP structure.

• Create a fresh project folder, get phyLinux, and make the script executable:

host:~$ mkdir ~/yocto
host:~$ cd yocto/
host:~/yocto$ wget https://download.phytec.de/Software/Linux/Yocto/Tools/phyLinux
host:~/yocto$ chmod +x phyLinux

Warning

A clean folder is important because phyLinux will clean its working directory. Calling phyLinux
from a directory that isn’t empty will result in a warning.

• Run phyLinux:

host:~/yocto$./phyLinux init

Note

On the first initialization, the phyLinux script will ask you to install the Repo tool in your /usr/
local/bin directory.

9

https://www.phytec.de/cdocuments/?doc=UIHsG
https://www.phytec.de/cdocuments/?doc=UIHsG
https://www.phytec.de/cdocuments/?doc=UIHsG
https://download.phytec.de/Software/Linux/BSP-Yocto-i.MX8MP/

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

• During the execution of the init command, you need to choose your processor platform (SoC),
PHYTEC’s BSP release number, and the hardware you are working on.

Note

If you cannot identify your board with the information given in the selector, have a look at the
invoice for the product. And have a look at our BSP.

• It is also possible to pass this information directly using command line parameters:

host:~/yocto$ DISTRO=ampliphy-vendor-xwayland MACHINE=phyboard-pollux-imx8mp-3 ./phyLinux␣
↪→init -p imx8mp -r BSP-Yocto-NXP-i.MX8MP-PD22.1.1

After the execution of the init command, phyLinux will print a few important notes. For example, it will
print your git identify, SOC and BSP release which was selected as well as information for the next steps in
the build process.

3.2.1 Starting the Build Process
• Set up the shell environment variables:

host:~/yocto$ source sources/poky/oe-init-build-env

Note

This needs to be done every time you open a new shell for starting builds.

• The current working directory of the shell should change to build/.

• Open the main configuration file and accept the GPU and VPU binary license agreements. Do this by
uncommenting the corresponding line, as below.

host:~/yocto/build$ vim conf/local.conf
Uncomment to accept NXP EULA
EULA can be found under ../sources/meta-freescale/EULA
ACCEPT_FSL_EULA = "1"

• Build your image:

host:~/yocto/build$ bitbake phytec-qt5demo-image

Note

For the first build we suggest starting with our smaller non-graphical image phytec-headless-image
to see if everything is working correctly.

host:~/yocto/build$ bitbake phytec-headless-image

The first compile process takes about 40 minutes on a modern Intel Core i7. All subsequent builds
will use the filled caches and should take about 3 minutes.

Building the BSP 10

https://www.phytec.de/bsp-download/?bsp=BSP-Yocto-NXP-i.MX8MP-PD22.1.1

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

3.2.2 BSP Images
All images generated by Bitbake are deployed to ~/yocto/build/deploy*/images/<machine>. The following
list shows for example all files generated for the phyboard-pollux-imx8mp-3 machine:

• u-boot.bin: Binary compiled U-boot bootloader (U-Boot). Not the final Bootloader image!

• oftree: Default kernel device tree

• u-boot-spl.bin: Secondary program loader (SPL)

• bl31-imx8mp.bin: ARM Trusted Firmware binary

• lpddr4_pmu_train_2d_dmem_202006.bin, lpddr4_pmu_train_2d_imem_202006.bin:
DDR PHY firmware images

• imx-boot: Bootloader build by imx-mkimage which includes SPL, U-Boot, ARM Trusted Firmware
and DDR firmware. This is the final bootloader image which is bootable.

• Image: Linux kernel image

• Image.config: Kernel configuration

• imx8mp-phyboard-pollux-rdk*.dtb: Kernel device tree file

• imx8mp-phy*.dtbo: Kernel device tree overlay files

• phytec-qt5demo-image*.tar.gz: Root file system

• phytec-qt5demo-image*.wic: SD card image

Building the BSP 11

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

Building the BSP 12

CHAPTER

FOUR

INSTALLING THE OS

4.1 Bootmode Switch (S3)

Tip

Hardware revision baseboard: 1552.2

The phyBOARD-Pollux features a boot switch with four individually switchable ports to select the
phyCORE-i.MX 8M Plus default bootsource.

13

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

Fig. 1: eMMC Fig. 2: Internal Fuses Fig. 3: SPI NOR

Fig. 4: USB Serial Download Fig. 5: SD Card Fig. 6: Test Mode

4.2 Flash eMMC
To boot from eMMC, make sure that the BSP image is flashed correctly to the eMMC and the bootmode
switch (S3) is set to Default SOM boot.

Warning

When eMMC and SD card are flashed with the same (identical) image, the UUIDs of the boot partitions
are also identical. If the SD card is connected when booting, this leads to non-deterministic behavior as
Linux mounts the boot partition based on UUID.

target:~$ blkid

can be run to inspect whether the current setup is affected. If mmcblk2p1 and mmcblk1p1 have an identical
UUID, the setup is affected.

Installing the OS 14

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

4.2.1 Flash eMMC from Network
i.MX 8M Plus boards have an Ethernet connector and can be updated over a network. Be sure to set up
the development host correctly. The IP needs to be set to 192.168.3.10, the netmask to 255.255.255.0, and
a TFTP server needs to be available. From a high-level point of view, an eMMC device is like an SD card.
Therefore, it is possible to flash the WIC image (<name>.wic) from the Yocto build system directly to the
eMMC. The image contains the bootloader, kernel, device tree, device tree overlays, and root file system.

Flash eMMC from Network in u-boot on Target

These steps will show how to update the eMMC via a network. However, they only work if the size of the
image file is less than 1GB. If the image file is larger, go to the section Format SD Card. Configure the
bootmode switch (S3) to boot from SD Card and put in an SD card. Power on the board and stop in U-Boot
prompt.

Tip

A working network is necessary! Setup Network Host

• Load your image via network to RAM:

u-boot=> tftp ${loadaddr} phytec-qt5demo-image-phyboard-pollux-imx8mp-3.wic
Using ethernet@30be0000 device
TFTP from server 192.168.3.10; our IP address is 192.168.3.11
Filename 'phytec-qt5demo-image-phyboard-pollux-imx8mp-3.wic'.
Load address: 0x40480000
Loading: ######################################

######################################
######################################
...
...
...
######################################
#############
11.2 MiB/s

done
Bytes transferred = 911842304 (36599c00 hex)

• Write the image to the eMMC:

u-boot=> mmc dev 2
switch to partitions #0, OK
mmc2(part 0) is current device
u-boot=> setexpr nblk ${filesize} / 0x200
u-boot=> mmc write ${loadaddr} 0x0 ${nblk}

MMC write: dev # 2, block # 0, count 1780942 ... 1780942 blocks written: OK

Flash eMMC via Network in Linux on Target

You can update the eMMC from your target.

Installing the OS 15

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

Tip

A working network is necessary! Setup Network Host.

Take a compressed or uncompressed image on the host and send it with ssh through the network (then
uncompress it, if necessary) to the eMMC of the target with a one-line command:

target:~$ ssh <USER>@192.168.3.10 "dd if=<path_to_file>/phytec-qt5demo-image-phyboard-pollux-
↪→imx8mp-3.wic" | dd of=/dev/mmcblk2

Flash eMMC via Network in Linux on Host

It is also possible to install the OS at eMMC from your Linux host. As before, you need a complete image
on your host.

Tip

A working network is necessary! Setup Network Host.

Show your available image files on the host:

host:~$ ls
phytec-qt5demo-image-phyboard-pollux-imx8mp-3.wic

Send the image with the command dd command combined with ssh through the network to the eMMC of
your device:

host:~$ dd if=phytec-qt5demo-image-phyboard-pollux-imx8mp-3.wic status=progress | ssh root@192.
↪→168.3.11 "dd of=/dev/mmcblk2"

4.2.2 Flash eMMC u-boot image via Network from running u-boot
Update the standalone u-boot image imx-boot is also possible from u-boot. This can be used if the bootloader
on eMMC is located in the eMMC user area.

Tip

A working network is necessary! Setup Network Host.

Load image over tftp into RAM and then write it to eMMC:

u-boot=> tftp ${loadaddr} imx-boot
u-boot=> setexpr nblk ${filesize} / 0x200
u-boot=> mmc dev 2
u-boot=> mmc write ${loadaddr} 0x40 ${nblk}

Hint

The hexadecimal value represents the offset as a multiple of 512 byte blocks. See the offset table for the
correct value of the corresponding SoC.

Installing the OS 16

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

4.2.3 Flash eMMC from USB
Flash eMMC from USB in u-boot on Target

Tip

This step only works if the size of the image file is less than 1GB due to limited usage of RAM size in
Bootloader after enabling the OPTEE.

These steps will show how to update the eMMC via a USB device. Configure the bootmode switch to
bootmode switch (S3) and put in an SD card. Power on the board and stop in u-boot prompt. Insert a USB
device with the copied WIC image to the USB slot.

Load your image from the USB device to RAM:

u-boot=> usb start
starting USB...
USB0: USB EHCI 1.00
scanning bus 0 for devices... 2 USB Device(s) found

scanning usb for storage devices... 1 Storage Device(s) found
u-boot=> fatload usb 0:1 ${loadaddr} *.wic
497444864 bytes read in 31577 ms (15 MiB/s)

Write the image to the eMMC:

u-boot=> mmc dev 2
switch to partitions #0, OK
mmc2(part 0) is current device
u-boot=> setexpr nblk ${filesize} / 0x200
u-boot=> mmc write ${loadaddr} 0x0 ${nblk}

MMC write: dev # 2, block # 0, count 1024000 ... 1024000 blocks written: OK
u-boot=> boot

Flash eMMC from USB in Linux

These steps will show how to flash the eMMC on Linux with a USB stick. You only need a complete image
saved on the USB stick and a bootable WIC image. (e.g. phytec-qt5demo-image-phyboard-pollux-imx8mp-
3.wic). Set the bootmode switch to bootmode switch (S3).

• Insert and mount the USB stick:

[60.458908] usb-storage 1-1.1:1.0: USB Mass Storage device detected
[60.467286] scsi host0: usb-storage 1-1.1:1.0
[61.504607] scsi 0:0:0:0: Direct-Access 8.07 PQ: 0 ANSI: 2
[61.515283] sd 0:0:0:0: [sda] 3782656 512-byte logical blocks: (1.94 GB/1.80 GiB)
[61.523285] sd 0:0:0:0: [sda] Write Protect is off
[61.528509] sd 0:0:0:0: [sda] No Caching mode page found
[61.533889] sd 0:0:0:0: [sda] Assuming drive cache: write through
[61.665969] sda: sda1
[61.672284] sd 0:0:0:0: [sda] Attached SCSI removable disk
target:~$ mount /dev/sda1 /mnt

• Now show your saved image files on the USB Stick:

Installing the OS 17

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

target:~$ cd /mnt
target:~$ ls
phytec-qt5demo-image-phyboard-pollux-imx8mp-3.wic

• Show list of available MMC devices:

target:~$ ls /dev | grep mmc
mmcblk1
mmcblk1p1
mmcblk1p2
mmcblk2
mmcblk2boot0
mmcblk2boot1
mmcblk2p1
mmcblk2p2
mmcblk2rpmb

• The eMMC device can be recognized by the fact that it contains two boot partitions: (mmcblk2boot0;
mmcblk2boot1)

• Write the image to the phyCORE-i.MX 8M Plus eMMC (MMC device 2 without partition):

target:~$ dd if=phytec-qt5demo-image-phyboard-pollux-imx8mp-3.wic of=/dev/mmcblk2

• After a complete write, your board can boot from eMMC.

Warning

Before this will work, you need to configure the multi-port switch to Default SOM Boot to bootmode
switch (S3).

4.2.4 Flash eMMC from SD Card
Even if there is no network available, you can update the eMMC. For that, you only need a ready-to-use
image file (*.wic) located on the SD card. Because the image file is quite large, you have to enlarge your SD
card to use its full space (if it was not enlarged before). To enlarge your SD card, see Resizing ext4 Root
Filesystem.

Flash eMMC from SD card in u-boot on Target

Tip

This step only works if the size of the image file is less than 1GB due to limited usage of RAM size in
Bootloader after enabling the OPTEE. If the image file is too large use the Updating eMMC from SD
card in Linux on Target subsection.

• Flash an SD card with a working image and create a third FAT partition. Copy the WIC image (for
example phytec-qt5demo-image.wic) to this partition.

• Configure the bootmode switch to boot from the SD Card and insert the SD card.

• Power on the board and stop in u-boot.

Installing the OS 18

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

• Flash your WIC image (for example phytec-qt5demo-image.wic) from the SD card to eMMC. This will
partition the card and copy imx-boot, Image, dtb, dtbo, and root file system to eMMC.

• Load the image:

u-boot=> fatload mmc 1:3 ${loadaddr} phytec-qt5demo-image-phyboard-pollux-imx8mp-3.wic
reading
911842304 bytes read in 39253 ms (22.2 MiB/s)

• Switch the mmc dev:

u-boot=> mmc list
FSL_SDHC: 1 (SD)
FSL_SDHC: 2 (eMMC)
u-boot=> mmc dev 2
switch to partitions #0, OK
mmc0(part 0) is current device
u-boot=> setexpr nblk ${filesize} / 0x200
u-boot=> mmc write ${loadaddr} 0x0 ${nblk}

MMC write: dev # 2, block # 0, count 1780942 ... 1780942 blocks written: OK

• Power off the board and change the multi-port switch to Default SOM Boot to boot from eMMC.

Flash eMMC from SD card in Linux on Target

You can also flash the eMMC on Linux. You only need a complete image saved on the SD card (e.g.
phytec-qt5demo-image-phyboard-pollux-imx8mp-3.wic).

• Show your saved image files on the SD card:

target:~$ ls
phytec-qt5demo-image-phyboard-pollux-imx8mp-3.wic

• Show list of available MMC devices:

target:~$ ls /dev | grep mmc
mmcblk1
mmcblk1p1
mmcblk1p2
mmcblk2
mmcblk2boot0
mmcblk2boot1
mmcblk2p1
mmcblk2p2
mmcblk2rpmb

• The eMMC device can be recognized by the fact that it contains two boot partitions: (mmcblk2boot0;
mmcblk2boot1)

• Write the image to the phyCORE-i.MX 8M Plus eMMC (MMC device 2 without partition):

target:~$ dd if=phytec-qt5demo-image-phyboard-pollux-imx8mp-3.wic of=/dev/mmcblk2

• After a complete write, your board can boot from eMMC.

Installing the OS 19

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

Warning

Before this will work, you need to configure the bootmode switch (S3) to Default SOM Boot to boot from
eMMC.

4.3 Flash SPI NOR Flash
The phyCORE-i.MX8MP modules are optionally equipped with SPI NOR Flash. To boot from SPI Flash,
set bootmode switch (S3) to QSPI boot to boot from QSPI. The SPI Flash is usually quite small. The
phyBOARD-Pollux-i.MX8MP kit only has 32MB SPI NOR flash populated. Only the bootloader and the
environment can be stored. The kernel, device tree, and file system are taken from eMMC by default.

The SPI NOR flash partition table is defined in the U-Boot environment. It can be printed with:

u-boot=> printenv mtdparts
mtdparts=30bb0000.spi:3840k(u-boot),128k(env),128k(env:redund),-(none)

4.3.1 Flash SPI NOR Flash from Network
The SPI NOR can contain the bootloader and environment to boot from. The arm64 kernel can not
decompress itself, the image size extends the SPI NOR flash populated on the phyCORE-i.MX 8M Plus.

Tip

A working network is necessary! Setup Network Host.

Flash SPI NOR from Network in u-boot on Target

Similar to updating the eMMC over a network, be sure to set up the development host correctly. The IP
needs to be set to 192.168.3.10, the netmask to 255.255.255.0, and a TFTP server needs to be available.
Before reading and writing is possible, the SPI-NOR flash needs to be probed:

u-boot=> sf probe
SF: Detected mt25qu512a with page size 256 Bytes, erase size 64 KiB, total 64 MiB

• A specially formatted u-boot image for the SPI NOR flash is used. Ensure you use the correct image
file. Load the image over tftp, erase and write the bootloader to the flash:

u-boot=> tftp ${loadaddr} imx-boot-phyboard-pollux-imx8mp-3-fspi.bin-flash_evk_flexspi
u-boot=> sf update ${loadaddr} 0 ${filesize}
device 0 offset 0x0, size 0x1c0b20
1641248 bytes written, 196608 bytes skipped in 4.768s, speed 394459 B/s

• Erase the environment partition as well. This way, the environment can be written after booting from
SPI NOR flash:

u-boot=> sf erase 0x400000 0x100000

Warning

Installing the OS 20

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

Erasing the complete SPI NOR flash when it is fully written will take quite some time. This can trigger
the watchdog to reset. Due to this, erase the full flash in Linux.

Flash SPI NOR from Network in kernel on Target

• Copy the image from the host to the target:

host:~$ scp imx-boot-phyboard-pollux-imx8mp-3-fspi.bin-flash_evk_flexspi root@192.168.3.11:/
↪→root

• Find the number of erase blocks of the U-boot partition:

target:~$ mtdinfo /dev/mtd0
mtd0
Name: u-boot
Type: nor
Eraseblock size: 65536 bytes, 64.0 KiB
Amount of eraseblocks: 60 (3932160 bytes, 3.7 MiB)
Minimum input/output unit size: 1 byte
Sub-page size: 1 byte
Character device major/minor: 90:0
Bad blocks are allowed: false
Device is writable: true

• Erase the u-boot partition and flash it:

target:~$ flash_erase /dev/mtd0 0x0 60
target:~$ flashcp imx-boot-phyboard-pollux-imx8mp-3-fspi.bin-flash_evk_flexspi /dev/mtd0

4.3.2 Flash SPI NOR Flash from SD Card
The bootloader on SPI NOR flash can be also flashed with SD Card.

Flash SPI NOR from SD Card in u-boot on Target

• Copy the SPI NOR flash U-boot image imx-boot-phyboard-pollux-imx8mp-3-fspi.bin-
flash_evk_flexspi to the FAT partition on the SD Card. Before reading and writing are possible, the
SPI-NOR flash needs to be probed:

u-boot=> sf probe
SF: Detected n25q256ax1 with page size 256 Bytes, erase size 64 KiB, total 32 MiB

• A specially formatted U-boot image for the SPI NOR flash is used. Ensure you use the correct image
file. Load the image from the SD Card, erase and write the bootloader to the flash:

u-boot=> mmc dev 1
u-boot=> fatload mmc 1:1 ${loadaddr} imx-boot-phyboard-pollux-imx8mp-3-fspi.bin-flash_evk_
↪→flexspi
u-boot=> sf update ${loadaddr} 0 ${filesize}

• Erase the environment partition as well. This way, the environment can be written after booting from
SPI NOR flash:

Installing the OS 21

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

u-boot=> sf erase 0x400000 0x100000

Warning

Erasing the complete SPI NOR flash when it is fully written will take quite some time. This can trigger
the watchdog to reset. Due to this, erase the full flash in Linux.

Flash SPI NOR from SD Card in kernel on Target

• Mount the SD Card:

host:~$ mount /dev/mmcblkp1 /mnt

• Find the number of erase blocks of the u-boot partition:

target:~$ mtdinfo /dev/mtd0
mtd0
Name: u-boot
Type: nor
Eraseblock size: 65536 bytes, 64.0 KiB
Amount of eraseblocks: 60 (3932160 bytes, 3.7 MiB)
Minimum input/output unit size: 1 byte
Sub-page size: 1 byte
Character device major/minor: 90:0
Bad blocks are allowed: false
Device is writable: true

• Erase the u-boot partition and flash it:

target:~$ flash_erase /dev/mtd0 0x0 60
target:~$ flashcp /mnt/imx-boot-phyboard-pollux-imx8mp-3-fspi.bin-flash_evk_flexspi /dev/
↪→mtd0

4.4 RAUC
The RAUC (Robust Auto-Update Controller) mechanism support has been added to meta-ampliphy. It
controls the procedure of updating a device with new firmware. This includes updating the Linux kernel,
Device Tree, and root filesystem. PHYTEC has written an online manual on how we have intergraded RAUC
into our BSPs: L-1006e.A3 RAUC Update & Device Management Manual.

Installing the OS 22

https://www.phytec.de/cdocuments/?doc=BKXvGQ

CHAPTER

FIVE

DEVELOPMENT

5.1 Host Network Preparation
For various tasks involving a network in the Bootloader, some host services are required to be set up. On the
development host, a TFTP, NFS and DHCP server must be installed and configured. The following tools
will be needed to boot via Ethernet:

host:~$ sudo apt install tftpd-hpa nfs-kernel-server kea

5.1.1 TFTP Server Setup
• First, create a directory to store the TFTP files:

host:~$ sudo mkdir /srv/tftp

• Then copy your BSP image files to this directory and make sure other users have read access to all the
files in the tftp directory, otherwise they are not accessible from the target.

host:~$ sudo chmod -R o+r /srv/tftp

• You also need to configure a static IP address for the appropriate interface. The default IP address
of the PHYTEC evaluation boards is 192.168.3.11. Setting a host address 192.168.3.10 with netmask
255.255.255.0 is a good choice.

host:~$ ip addr show <network-interface>

Replace <network-interface> with the network interface you configured and want to connect the board
to. You can show all network interfaces by not specifying a network interface.

• The message you receive should contain this:

inet 192.168.3.10/24 brd 192.168.3.255

• Create or edit the /etc/default/tftpd-hpa file:

/etc/default/tftpd-hpa

TFTP_USERNAME="tftp"
TFTP_DIRECTORY="/srv/tftp"
TFTP_ADDRESS=":69"
TFTP_OPTIONS="-s -c"

• Set TFTP_DIRECTORY to your TFTP server root directory

23

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

• Set TFTP_ADDRESS to the host address the server is listening to (set to 0.0.0.0:69 to listen to all
local IPs)

• Set TFTP_OPTIONS, the following command shows the available options:

host:~$ man tftpd

• Restart the services to pick up the configuration changes:

host:~$ sudo service tftpd-hpa restart

Now connect the ethernet port of the board to your host system. We also need a network connection
between the embedded board and the TFTP server. The server should be set to IP 192.168.3.10 and
netmask 255.255.255.0.

NFS Server Setup

• Create an nfs directory:

host:~$ sudo mkdir /srv/nfs

• The NFS server is not restricted to a certain file system location, so all we have to do on most
distributions is modify the file /etc/exports and export our root file system to the embedded network.
In this example file, the whole directory is exported and the “lab network” address of the development
host is 192.168.3.10. The IP address has to be adapted to the local needs:

/srv/nfs 192.168.3.0/255.255.255.0(rw,no_root_squash,sync,no_subtree_check)

• Now the NFS-Server has to read the /etc/exportfs file again:

host:~$ sudo exportfs -ra

DHCP Server setup

• Create or edit the /etc/kea/kea-dhcp4.conf file; Using the internal subnet sample. Replace <network-
interface> with the name for the physical network interface:

{
"Dhcp4": {
"interfaces-config": {
"interfaces": ["<network-interface>/192.168.3.10"]

},
"lease-database": {
"type": "memfile",
"persist": true,
"name": "/tmp/dhcp4.leases"

},
"valid-lifetime": 28800,
"subnet4": [{

"id": 1,
"next-server": "192.168.3.10",
"subnet": "192.168.3.0/24",
"pools": [
{ "pool": "192.168.3.1 - 192.168.3.255" }

]
(continues on next page)

Development 24

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

(continued from previous page)

}]
}

}

Warning

Be careful when creating subnets as this may interfere with the company network policy. To be on the
safe side, use a different network and specify that via the interfaces configuration option.

• Now the DHCP-Server has to read the /etc/kea/kea-dhcp4.conf file again:

host:~$ sudo systemctl restart kea-dhcp4-server

When you boot/restart your host PC and don’t have the network interface, as specified in the kea-dhcp4
config, already active the kea-dhcp4-server will fail to start. Make sure to start/restart the systemd service
when you connect the interface.

5.2 Booting the Kernel from a Network
Booting from a network means loading the kernel and device tree over TFTP and the root file system over
NFS. The bootloader itself must already be loaded from another available boot device.

5.2.1 Place Images on Host for Netboot
• Copy the kernel image to your tftp directory:

host:~$ cp Image /srv/tftp

• Copy the devicetree to your tftp directory:

host:~$ cp oftree /srv/tftp

• Copy all the overlays you want to use into your tftp directory:

host:~$ cp *.dtbo /srv/tftp

• Make sure other users have read access to all the files in the tftp directory, otherwise they are not
accessible from the target:

host:~$ sudo chmod -R o+r /srv/tftp

• Extract the rootfs to your nfs directory:

host:~$ sudo tar -xvzf phytec-qt5demo-image-phyboard-pollux-imx8mp-3.tar.gz -C /srv/nfs

Note

Make sure you extract with sudo to preserve the correct ownership.

Development 25

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

5.2.2 Set the bootenv.txt for Netboot
Create a bootenv.txt file in your tftp directory and write the following variables into it.

bootfile=Image
fdt_file=oftree
nfsroot=/srv/nfs
overlays=<overlayfilenames>

<overlayfilenames> has to be replaced with the devicetree overlay filenames that you want to use. Separate
the filenames by spaces. For example:

overlays=example-overlay1.dtbo example-overlay2.dtbo

Tip

All supported devicetree overlays are in the device tree chapter.

5.2.3 Network Settings on Target
To customize the targets ethernet configuration, please follow the description here: Network Environment
Customization

5.2.4 Booting from an Embedded Board
Boot the board into the U-boot prompt and press any key to hold.

• To boot from a network, call:

u-boot=> run netboot

5.3 Working with UUU-Tool
The Universal Update Utility Tool (UUU-Tool) from NXP is a software to execute on the host to load and
run the bootloader on the board through SDP (Serial Download Protocol). For detailed information visit
https://github.com/nxp-imx/mfgtools or download the Official UUU-tool documentation.

5.3.1 Host preparations for UUU-Tool Usage
• Follow the instructions from https://github.com/nxp-imx/mfgtools#linux.

• If you built UUU from source, add it to PATH:

This BASH command adds UUU only temporarily to PATH. To add it permanently, add this line to
~/.bashrc.

export PATH=~/mfgtools/uuu/:"$PATH"

• Set udev rules (documented in uuu -udev):

host:~$ sudo sh -c "uuu -udev >> /etc/udev/rules.d/70-uuu.rules"
host:~$ sudo udevadm control --reload

Development 26

https://github.com/nxp-imx/mfgtools
https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/imx-processors/140261/1/UUU.pdf
https://github.com/nxp-imx/mfgtools#linux

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

5.3.2 Get Images
Download imx-boot from our server or get it from your Yocto build directory at
build/deploy/images/phyboard-pollux-imx8mp-3/. For flashing a wic image to eMMC, you will also
need phytec-qt5demo-image-phyboard-pollux-imx8mp-3.wic.

5.3.3 Prepare Target
Set the bootmode switch (S3) to USB Serial Download. Also, connect USB port X5 (upper connector) to
your host.

5.3.4 Starting bootloader via UUU-Tool
Execute and power up the board:

host:~$ sudo uuu -b spl imx-boot

You can see the bootlog on the console via (X1), as usual.

Note

The default boot command when booting with UUU-Tool is set to fastboot. If you want to change
this, please adjust the environment variable bootcmd_mfg in U-boot prompt with setenv bootcmd_mfg.
Please note, when booting with UUU-tool the default environment is loaded. Saveenv has no effect. If
you want to change the boot command permanently for UUU-boot, you need to change this in U-Boot
code.

5.3.5 Flashing U-boot Image to eMMC via UUU-Tool

Warning

UUU flashes U-boot into eMMC BOOT (hardware) boot partitions, and it sets the
BOOT_PARTITION_ENABLE in the eMMC! This is a problem since we want the bootloader
to reside in the eMMC USER partition. Flashing next U-Boot version .wic image and not disabling
BOOT_PARTITION_ENABLE bit will result in device always using U-boot saved in BOOT partitions.
To fix this in U-Boot:
u-boot=> mmc partconf 2 0 0 0
u-boot=> mmc partconf 2
EXT_CSD[179], PARTITION_CONFIG:
BOOT_ACK: 0x0
BOOT_PARTITION_ENABLE: 0x0
PARTITION_ACCESS: 0x0

or check Disable booting from eMMC boot partitions from Linux.

This way the bootloader is still flashed to eMMC BOOT partitions but it is not used!

When using partup tool and .partup package for eMMC flashing this is done by default, which makes
partup again superior flash option.

Execute and power up the board:

host:~$ sudo uuu -b emmc imx-boot

Development 27

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

5.3.6 Flashing wic Image to eMMC via UUU-Tool
Execute and power up the board:

host:~$ sudo uuu -b emmc_all imx-boot phytec-qt5demo-image-phyboard-pollux-imx8mp-3.wic

5.4 Standalone Build preparation
In this section, we describe how to build the U-Boot and the Linux kernel without using the Yocto Project.
This procedure makes the most sense for development. The U-Boot source code, the Linux kernel, and all
other git repositories are available on our Git server at git://git.phytec.de.

Note

Should your company firewall/gateway inhibit the git protocol, you may use HTTP or HTTPS instead
(e.g. git clone git://git.phytec.de/u-boot-imx)

5.4.1 Git Repositories
• Used U-Boot repository:

git://git.phytec.de/u-boot-imx

• Our U-Boot is based on the u-boot-imx and adds board-specific patches.

• Used Linux kernel repository:

git://git.phytec.de/linux-imx

• Our i.MX 8M Plus kernel is based on the linux-imx kernel.

To find out which u-boot and kernel tags to use for a specific board, have a look at your BSP source folder:

meta-phytec/dynamic-layers/freescale-layer/recipes-kernel/linux/linux-imx_*.bb
meta-phytec/recipes-bsp/u-boot/u-boot-imx_*.bb

5.4.2 Get the SDK
You can download the SDK here, or build it yourself with Yocto:

• Move to the Yocto build directory:

host:~$ source sources/poky/oe-init-build-env
host:~$ bitbake -c populate_sdk phytec-qt5demo-image # or another image

After a successful build the SDK installer is deployed to build/deploy*/sdk.

5.4.3 Install the SDK
• Set correct permissions and install the SDK:

host:~$ chmod +x phytec-ampliphy-vendor-xwayland-glibc-x86_64-phytec-qt5demo-image-
↪→cortexa53-crypto-toolchain-BSP-Yocto-NXP-i.MX8MP-PD22.1.1.sh
host:~$./phytec-ampliphy-vendor-xwayland-glibc-x86_64-phytec-qt5demo-image-cortexa53-

(continues on next page)

Development 28

https://www.yoctoproject.org/
https://git.phytec.de/
https://download.phytec.de/Software/Linux/BSP-Yocto-i.MX8MP/BSP-Yocto-NXP-i.MX8MP-PD22.1.1/sdk/ampliphy-vendor-xwayland/

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

(continued from previous page)

↪→crypto-toolchain-BSP-Yocto-NXP-i.MX8MP-PD22.1.1.sh
==
Enter target directory for SDK (default: /opt/ampliphy-vendor-xwayland/BSP-Yocto-NXP-i.
↪→MX8MP-PD22.1.1):
You are about to install the SDK to "/opt/ampliphy-vendor-xwayland/BSP-Yocto-NXP-i.MX8MP-
↪→PD22.1.1". Proceed [Y/n]? Y
Extracting SDK...done
Setting it up...done
SDK has been successfully set up and is ready to be used.

5.4.4 Using the SDK
Activate the toolchain for your shell by sourcing the environment-setup file in the toolchain directory:

host:~$ source /opt/ampliphy-vendor-xwayland/BSP-Yocto-NXP-i.MX8MP-PD22.1.1/environment-setup-
↪→cortexa53-crypto-phytec-linux

5.4.5 Installing Required Tools
Building Linux and U-Boot out-of-tree requires some additional host tool dependencies to be installed. For
Ubuntu you can install them with:

host:~$ sudo apt install bison flex libssl-dev

5.5 U-Boot standalone build

5.5.1 Get the source code
• Get the U-Boot sources:

host:~$ git clone git://git.phytec.de/u-boot-imx

• To get the correct U-Boot tag you need to take a look at our release notes, which can be found here:
release notes

• The tag needed at this release is called v2021.04_2.2.0-phy13

• Check out the needed U-Boot tag:

host:~$ cd ~/u-boot-imx/
host:~$ git fetch --all --tags
host:~$ git checkout tags/v2021.04_2.2.0-phy13

• Technically, you can now build the U-Boot, but practically there are some further steps necessary:

– Create your own development branch:

host:~$ git switch --create <new-branch>

Note

You can name your development branch as you like, this is just an example.

Development 29

https://git.phytec.de/phy2octo/tree/releasenotes?h=imx8mp

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

• Set up a build environment:

host:~$ source /opt/ampliphy-vendor-xwayland/BSP-Yocto-NXP-i.MX8MP-PD22.1.1/environment-
↪→setup-cortexa53-crypto-phytec-linux

• Set this environment variable before building the Image:

host:~$ export ATF_LOAD_ADDR=0x970000

5.5.2 Get the needed binaries
To build the bootloader, you need to copy these files to your u-boot-imx build directory and rename
them to fit with mkimage script:

• ARM Trusted firmware binary (mkimage tool compatible format bl31.bin): bl31-imx8mp.bin

• OPTEE image (optional): tee.bin

• DDR firmware files (mkimage tool compatible format lpddr4_[i,d]mem_*d_*.bin):
lpddr4_dmem_1d_*.bin, lpddr4_dmem_2d_*.bin, lpddr4_imem_1d_*.bin,
lpddr4_imem_2d_*.bin

If you already built our BSP with Yocto, you can get the bl31-imx8mp.bin, tee.bin and lpddr4_*.bin from
the directory mentioned here: BSP Images

Or you can download the files here: https://download.phytec.de/Software/Linux/BSP-Yocto-i.MX8MP/
BSP-Yocto-NXP-i.MX8MP-PD22.1.1/images/ampliphy-vendor-xwayland/phyboard-pollux-imx8mp-3/
imx-boot-tools/

Warning

Make sure you rename the files you need so that they are compatible with the mkimage tool.

5.5.3 Build the bootloader
• build flash.bin (imx-boot):

host:~$ make phycore-imx8mp_defconfig
host:~$ make flash.bin

5.5.4 Flash the bootloader to a block device
The flash.bin can be found at u-boot-imx/ directory and now can be flashed. A chip-specific offset is needed:

SoC Offset User Area Offset Boot Partition eMMC Device
i.MX 8M Plus 32 kiB 0 kiB /dev/mmcblk2

E.g. flash SD card:

host:~$ sudo dd if=flash.bin of=/dev/sd[x] bs=1024 seek=32 conv=sync

Development 30

https://download.phytec.de/Software/Linux/BSP-Yocto-i.MX8MP/BSP-Yocto-NXP-i.MX8MP-PD22.1.1/images/ampliphy-vendor-xwayland/phyboard-pollux-imx8mp-3/imx-boot-tools/
https://download.phytec.de/Software/Linux/BSP-Yocto-i.MX8MP/BSP-Yocto-NXP-i.MX8MP-PD22.1.1/images/ampliphy-vendor-xwayland/phyboard-pollux-imx8mp-3/imx-boot-tools/
https://download.phytec.de/Software/Linux/BSP-Yocto-i.MX8MP/BSP-Yocto-NXP-i.MX8MP-PD22.1.1/images/ampliphy-vendor-xwayland/phyboard-pollux-imx8mp-3/imx-boot-tools/

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

Hint

The specific offset values are also declared in the Yocto variables “BOOTLOADER_SEEK” and “BOOT-
LOADER_SEEK_EMMC”

5.5.5 Build U-Boot With a Fixed RAM Size
If you cannot boot your system anymore because the hardware introspection in the EEPROM is damaged
or deleted, you can create a flash.bin with a fixed ram size. You should still contact support and flash the
correct EEPROM data, as this could lead to unexpected behavior.

Follow the steps to get the U-boot sources and check the correct branch in the Build U-Boot section.

Edit the file configs/phycore-imx8mp_defconfig:

CONFIG_TARGET_PHYCORE_IMX8MP=y
CONFIG_PHYCORE_IMX8MP_RAM_SIZE_FIX=y
CONFIG_PHYCORE_IMX8MP_RAM_SIZE_1GB=y
CONFIG_PHYCORE_IMX8MP_RAM_SIZE_2GB=y
CONFIG_PHYCORE_IMX8MP_RAM_SIZE_4GB=y

Choose the correct RAM size as populated on the board and uncomment the line for this ram size. After
saving the changes, follow the remaining steps from Build U-Boot.

5.6 Kernel standalone build

5.6.1 Setup sources
• The used linux-imx branch can be found in the release notes

• The tag needed for this release is called v5.10.72_2.2.0-phy17

• Check out the needed linux-imx tag:

host:~$ git clone git://git.phytec.de/linux-imx
host:~$ cd ~/linux-imx/
host:~/linux-imx$ git fetch --all --tags
host:~/linux-imx$ git checkout tags/v5.10.72_2.2.0-phy17

• For committing changes, it is highly recommended to switch to a new branch:

host:~/linux-imx$ git switch --create <new-branch>

• Set up a build environment:

host:~/linux-imx$ source /opt/ampliphy-vendor-xwayland/BSP-Yocto-NXP-i.MX8MP-PD22.1.1/
↪→environment-setup-cortexa53-crypto-phytec-linux

5.6.2 Build the kernel
• Build the linux kernel:

host:~/linux-imx$ make imx_v8_defconfig imx8_phytec_distro.config imx8_phytec_platform.
↪→config
host:~/linux-imx$ make -j$(nproc)

Development 31

https://git.phytec.de/phy2octo/tree/releasenotes?h=imx8mp

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

• Install kernel modules to e.g. NFS directory:

host:~/linux-imx$ make INSTALL_MOD_PATH=/home/<user>/<rootfspath> modules_install

• The Image can be found at ~/linux-imx/arch/arm64/boot/Image

• The dtb can be found at ~/linux-imx/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux-
rdk.dtb

• For (re-)building only Devicetrees and -overlays, it is sufficient to run

host:~/linux-imx$ make dtbs

Note

If you are facing the following build issue:

scripts/dtc/yamltree.c:9:10: fatal error: yaml.h: No such file or directory

Make sure you installed the package “libyaml-dev” on your host system:

host:~$ sudo apt install libyaml-dev

5.6.3 Copy Kernel to SD Card
When one-time boot via netboot is not sufficient, the kernel along with its modules and the corresponding
device tree blob may be copied directly to a mounted SD card.

host:~/linux-imx$ cp arch/arm64/boot/Image /path/to/sdcard/boot/
host:~/linux-imx$ cp arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux-rdk.dtb /path/to/
↪→sdcard/boot/oftree
host:~/linux-imx$ make INSTALL_MOD_PATH=/path/to/sdcard/root/ modules_install

5.7 Accessing the Development states

5.7.1 Development state of current release
These release manifests exist to give you access to the development states of the Yocto BSP. They will not
be displayed in the phyLinux selection menu but need to be selected manually. This can be done using the
following command line:

host:~$./phyLinux init -p imx8mp -r BSP-Yocto-NXP-i.MX8MP-PD22.1.y

This will initialize a BSP that will track the latest development state of the current release (BSP-Yocto-
NXP-i.MX8MP-PD22.1.1). From now on repo sync in this folder will pull all the latest changes from our
Git repositories:

host:~$ repo sync

5.7.2 Development state of upcoming release
Also development states of upcoming releases can be accessed this way. For this execute the following
command and look for a release with a higher PDXX.Y number than the latest one (BSP-Yocto-NXP-
i.MX8MP-PD22.1.1) and .y at the end:

Development 32

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

host:~$./phyLinux init -p imx8mp

5.8 Accessing the Latest Upstream Support
We have a vanilla manifest that makes use of the Yocto master branches (not an NXP release), Linux, and
U-Boot. This can be used to test the latest upstream kernel/U-Boot.

Note

The master manifest reflects the latest state of development. This tends to be broken from time to time.
We try to fix the master on a regular basis.

host:~$./phyLinux init -p imx8mp -r BSP-Yocto-Ampliphy-i.MX8MP-master

5.9 Format SD-Card
Most images are larger than the default root partition. To flash any storage device with SD Card, the rootfs
needs to be expanded or a separate partition needs to be created. There are some different ways to format
the SD Card. The easiest way to do this is to use the UI program Gparted.

5.9.1 Gparted
• Get GParted:

host:~$ sudo apt install gparted

• Insert the SD Card into your host and get the device name:

host:~$ dmesg | tail
...
[30436.175412] sd 4:0:0:0: [sdb] 62453760 512-byte logical blocks: (32.0 GB/29.8 GiB)
[30436.179846] sdb: sdb1 sdb2
...

• Unmount all SD Card partitions.

• Launch GParted:

host:~$ sudo gparted

Development 33

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

Expand rootfs

Warning

Running gparted on host systems which are using resize2fs version 1.46.6 and older (e.g. Ubuntu 22.04)
are not able to expand the ext4 partition created with Yocto Mickledore and newer. This is due to a new
default option in resize2fs which causes a incompatibility. See release notes.

• Choose your SD Card device at the drop-down menu on the top right

• Choose the ext4 root partition and click on resize:

Development 34

https://e2fsprogs.sourceforge.net/e2fsprogs-release.html#1.47.0

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

• Drag the slider as far as you like or enter the size manually.

Development 35

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

• Confirm your entry by clicking on the “Change size” button.

• To apply your changes, press the green tick.

Development 36

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

• Now you can mount the root partition and copy e.g. the phytec-qt5demo-image-phyboard-pollux-
imx8mp-3.wic image to it. Then unmount it again:

host:~$ sudo cp phytec-qt5demo-image-phyboard-pollux-imx8mp-3.wic /mnt/ ; sync
host:~$ umount /mnt

Create the Third Partition

• Choose your SD Card device at the drop-down menu on the top right

• Choose the bigger unallocated area and press “New”:

Development 37

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

• Click “Add”

• Confirm your changes by pressing the green tick.

Development 38

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

• Now you can mount the new partition and copy e.g. phytec-qt5demo-image-phyboard-pollux-imx8mp-
3.wic image to it. Then unmount it again:

host:~$ sudo mount /dev/sde3 /mnt
host:~$ sudo cp phytec-qt5demo-image-phyboard-pollux-imx8mp-3.wic /mnt/ ; sync
host:~$ umount /mnt

Development 39

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

Development 40

CHAPTER

SIX

DEVICE TREE (DT)

6.1 Introduction
The following text briefly describes the Device Tree and can be found in the Linux kernel Documentation
(https://docs.kernel.org/devicetree/usage-model.html)

“The “Open Firmware Device Tree”, or simply Devicetree (DT), is a data structure and language for
describing hardware. More specifically, it is a description of hardware that is readable by an operating system
so that the operating system doesn’t need to hard code details of the machine.”

The kernel documentation is a really good source for a DT introduction. An overview of the device tree data
format can be found on the device tree usage page at devicetree.org.

6.2 PHYTEC i.MX 8M Plus BSP Device Tree Concept
The following sections explain some rules PHYTEC has defined on how to set up device trees for our i.MX
8M Plus SoC-based boards.

6.2.1 Device Tree Structure
• Module.dtsi - Module includes all devices mounted on the SoM, such as PMIC and RAM.

• Carrierboard.dtsi - Devices that come from the i.MX 8M Plus SoC but are just routed down to the
carrier board and used there are included in this dtsi.

• Board.dts - include the carrier board and module dtsi files. There may also be some hardware con-
figuration nodes enabled on the carrier board or the module (i.e. the Board .dts shows the special
characteristics of the board configuration). For example, there are phyCORE-i.MX 8M Plus SOMs
which may or may not have a MIPI DSI to LVDS converter mounted. The converter is enabled (if
available) in the Board .dts and not in the Module .dtsi

From the root directory of the Linux Kernel our devicetree files for i.MX 8 platforms can be found in
arch/arm64/boot/dts/freescale/.

6.2.2 Device Tree Overlay
Device Tree overlays are device tree fragments that can be merged into a device tree during boot time. These
are for example hardware descriptions of an expansion board. They are instead of being added to the device
tree as an extra include, now applied as an overlay. They also may only contain setting the status of a node
depending on if it is mounted or not. The device tree overlays are placed next to the other device tree files
in our Linux kernel repository in the subfolder arch/arm64/boot/dts/freescale/overlays.

Available overlays for phyboard-pollux-imx8mp-3.conf are:

41

https://docs.kernel.org/devicetree/usage-model.html
https://www.devicetree.org/

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

imx8mp-isi-csi1.dtbo
imx8mp-isi-csi2.dtbo
imx8mp-isp-csi1.dtbo
imx8mp-isp-csi2.dtbo
imx8mp-phyboard-pollux-peb-av-010.dtbo
imx8mp-phyboard-pollux-peb-av-012.dtbo
imx8mp-phyboard-pollux-peb-wlbt-05.dtbo
imx8mp-phycore-no-eth.dtbo
imx8mp-phycore-no-rtc.dtbo
imx8mp-phycore-no-spiflash.dtbo
imx8mp-phycore-rpmsg.dtbo
imx8mp-vm016-csi1.dtbo
imx8mp-vm016-csi1-fpdlink.dtbo
imx8mp-vm016-csi2.dtbo
imx8mp-vm016-csi2-fpdlink.dtbo
imx8mp-vm017-csi1.dtbo
imx8mp-vm017-csi1-fpdlink.dtbo
imx8mp-vm017-csi2.dtbo
imx8mp-vm017-csi2-fpdlink.dtbo

Hint

There is one more overlay available for phyboard-pollux-imx8mp-2.conf: imx8mp-phyboard-pollux-
1552.1.dtbo

The usage of overlays can be configured during runtime in Linux or U-Boot. Overlays are applied during
the boot process in the bootloader after the boot command is called and before the kernel is loaded. The
next sections explain the configuration in more detail.

Set ${overlays} variable

The ${overlays} U-Boot environment variable contains a space-separated list of overlays that will be applied
during boot. Depending on the boot source the overlays have to either be placed in the boot partition of
eMMC/SD-Card or are loaded over tftp. Overlays set in the $KERNEL_DEVICETREE Yocto machine
variable will be automatically added to the boot partition of the final WIC image.

The ${overlays} variable can be either set directly in the U-Boot environment or can be part of the external
bootenv.txt environment file. By default, the ${overlays} variable comes from the external bootenv.txt
environment file which is located in the boot partition. You can read and write the file on booted target
from linux:

target:~$ cat /boot/bootenv.txt
overlays=imx8mp-phyboard-pollux-rdk-peb-eval-01.dtbo imx8mp-phyboard-pollux-peb-av-010.dtbo

Changes will take effect after the next reboot. If no bootenv.txt file is available the overlays variable can be
set directly in the U-Boot environment.

u-boot=> setenv overlays imx8mp-phyboard-pollux-peb-av-010.dtbo
u-boot=> printenv overlays
overlays=imx8mp-phyboard-pollux-peb-av-010.dtbo
u-boot=> boot

If a user defined ${overlays} variable should be directly loaded from U-Boot environment but there is still

Device Tree (DT) 42

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

an external bootenv.txt available, the ${no_bootenv} variable needs to be set as a flag:

u-boot=> setenv no_bootenv 1
u-boot=> setenv overlays imx8mp-phyboard-pollux-peb-av-010.dtbo
u-boot=> boot

More information about the external environment can be found in U-boot External Environment subsection
of the device tree overlay section.

We use the ${overlays} variable for overlays describing expansion boards and cameras that can not be
detected during run time. To prevent applying overlays listed in the ${overlays} variable during boot, the
${no_overlays} variable can be set to 1 in the bootloader environment.

u-boot=> setenv no_overlays 1
u-boot=> boot

Extension Command

The U-Boot extension command makes it possible to easily apply overlays that have been detected and
added to a list by the board code callback extension_board_scan(). Overlays applied this way disable
components that are not populated on the SoM. The detection is done with the EEPROM data (EEPROM
SoM Detection) found on the SoM i2c EEPROM.

It depends on the SoM variant if any device tree overlays will be applied. To check if an overlay will be
applied on the running SoM in U-Boot, run:

u-boot=> extension scan
Found 1 extension board(s).
u-boot=> extension list
Extension 0: phyCORE-i.MX8MP no SPI flash

Manufacturer: PHYTEC
Version:
Devicetree overlay: imx8mp-phycore-no-spiflash.dtbo
Other information: SPI flash not populated on SoM

If the EEPROM data is not available, no device tree overlays are applied.

To prevent running the extension command during boot the ${no_extensions} variable can be set to 1 in
the bootloader environment:

u-boot=> setenv no_extensions 1
u-boot=> boot

6.2.3 U-boot External Environment
During the start of the Linux Kernel the external environment bootenv.txt text file will be loaded from the
boot partition of an MMC device or via TFTP. The main intention of this file is to store the ${overlays}
variable. This makes it easy to pre-define the overlays in Yocto depending on the used machine. The
content from the file is defined in the Yocto recipe bootenv found in meta-phytec: https://git.phytec.de/
meta-phytec/tree/recipes-bsp/bootenv?h=hardknott

Other variables can be set in this file, too. They will overwrite the existing settings in the environment.
But only variables evaluated after issuing the boot command can be overwritten, such as ${nfsroot} or
${mmcargs}. Changing other variables in that file will not have an effect. See the usage during netboot as
an example.

Device Tree (DT) 43

https://git.phytec.de/u-boot-imx/tree/board/phytec/phycore_imx8mp/phycore-imx8mp.c?h=v2021.04_2.2.0-phy13#n239
https://git.phytec.de/meta-phytec/tree/recipes-bsp/bootenv?h=hardknott
https://git.phytec.de/meta-phytec/tree/recipes-bsp/bootenv?h=hardknott

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

If the external environment can not be loaded the boot process will be anyway continued with the values of
the existing environment settings.

6.2.4 Change U-boot Environment from Linux on Target
Libubootenv is a tool included in our images to modify the U-Boot environment of Linux on the target
machine.

Print the U-Boot environment using the following command:

target:~$ fw_printenv

Modify a U-Boot environment variable using the following command:

target:~$ fw_setenv <variable> <value>

Caution

Libubootenv takes the environment selected in a configuration file. The environment to use is inserted
there, and by default it is configured to use the eMMC environment (known as the default used environ-
ment).

If the eMMC is not flashed or the eMMC environment is deleted, libubootenv will not work. You should
modify the /etc/fw_env.config file to match the environment source that you want to use.

Device Tree (DT) 44

CHAPTER

SEVEN

ACCESSING PERIPHERALS

To find out which boards and modules are supported by the release of PHYTEC’s phyCORE-i.MX 8M Plus
BSP described herein, visit our BSP web page and click the corresponding BSP release in the download
section. Here you can find all hardware supported in the columns “Hardware Article Number” and the
correct machine name in the corresponding cell under “Machine Name”.

To achieve maximum software reuse, the Linux kernel offers a sophisticated infrastructure that layers software
components into board-specific parts. The BSP tries to modularize the kit features as much as possible.
When a customized baseboard or even a customer-specific module is developed, most of the software support
can be re-used without error-prone copy-and-paste. The kernel code corresponding to the boards can be
found in device trees (DT) in the kernel repository under arch/arm64/boot/dts/freescale/*.dts.

In fact, software reuse is one of the most important features of the Linux kernel, especially of the ARM
implementation which always has to fight with an insane number of possibilities of the System-on-Chip
CPUs. The whole board-specific hardware is described in DTs and is not part of the kernel image itself. The
hardware description is in its own separate binary, called the Device Tree Blob (DTB) (section device tree).

Please read section PHYTEC i.MX 8M Plus BSP Device Tree Concept to get an understanding of our i.MX
8 BSP device tree model.

The following sections provide an overview of the supported hardware components and their operating system
drivers on the i.MX 8 platform. Further changes can be ported upon customer request.

7.1 i.MX 8M Plus Pin Muxing
The i.MX 8M Plus SoC contains many peripheral interfaces. In order to reduce package size and lower
overall system cost while maintaining maximum functionality, many of the i.MX 8M Plus terminals can
multiplex up to eight signal functions. Although there are many combinations of pin multiplexing that are
possible, only a certain number of sets, called IO sets, are valid due to timing limitations. These valid IO
sets were carefully chosen to provide many possible application scenarios for the user.

Please refer to our Hardware Manual or the NXP i.MX 8M Plus Reference Manual for more information
about the specific pins and the muxing capabilities.

The IO set configuration, also called muxing, is done in the Device Tree. The driver pinctrl-single reads the
DT’s node fsl,pins, and does the appropriate pin muxing.

The following is an example of the pin muxing of the UART1 device in imx8mp-phyboard-pollux.dtsi:

pinctrl_uart1: uart1grp {
fsl,pins = <

MX8MP_IOMUXC_UART1_RXD_UART1_DCE_RX 0x49
MX8MP_IOMUXC_UART1_TXD_UART1_DCE_TX 0x49

>;
};

45

https://www.phytec.de/bsp-download/?bsp=BSP-Yocto-NXP-i.MX8MP-PD22.1.1

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

The first part of the string MX8MP_IOMUXC_UART1_RXD_UART1_DCE_RX names the pad (in this
example UART1_RXD). The second part of the string (UART1_DCE_RX) is the desired muxing option
for this pad. The pad setting value (hex value on the right) defines different modes of the pad, for example,
if internal pull resistors are activated or not. In this case, the internal resistors are disabled.

7.2 RS232/RS485
The phyCORE-i.MX 8M Plus supports up to 4 UART units. On the phyBOARD-Pollux, TTL level signals
of UART1 (the standard console) and UART4 are routed to Silicon Labs CP2105 UART to USB converter
expansion. This USB is brought out at Micro-USB connector X1. UART3 is at X6 (Expansion Connector)
at TTL level. UART2 is connected to a multi-protocol transceiver for RS-232 and RS-485, available at pin
header connector X2 at the RS-232 level, or at the RS-485 level. The configuration of the multi-protocol
transceiver is done by jumpers JP3 and JP4 on the baseboard. For more information about the correct
setup please refer to the phyCORE-i.MX 8M Plus/phyBOARD-Pollux Hardware Manual section UARTs.

We use the same device tree node for RS-232 and RS-485. RS-485 mode can be enabled with ioctl TI-
OCSRS485. Also, full-duplex support is also configured using ioctls. Have a look at our small example
application rs485test, which is also included in the BSP. The jumpers JP3 and JP4 need to be set correctly.

7.2.1 RS232
• Display the current settings of a terminal in a human-readable format:

target:~$ stty -a

• Configuration of the UART interface can be done with stty. For example:

target:~$ stty -F /dev/ttymxc1 115200 crtscts raw -echo

• With a simple echo and cat, basic communication can be tested. Example:

target:~$ echo 123 > /dev/ttymxc1

host:~$ cat /dev/ttyUSB2

The host should print out “123”.

7.2.2 RS485

Hint

Remember to use bus termination resistors of 120 Ohm at each end of the bus, when using longer cables.

For easy testing, look at the linux-serial-test. This tool is called the IOCTL for RS485 and sends a constant
stream of data.

target:~$ linux-serial-test -p /dev/ttymxc1 -b 115200 --rs485 0

More information about the linux-serial-test tool and its parameters can be found here: linux-serial-test

The linux-serial-test will automatically set ioctls, but they can also be set manually with rs485conf.

You can show the current config with:

Accessing Peripherals 46

https://github.com/cbrake/linux-serial-test

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

target:~$ rs485conf /dev/ttymxc1

You can show all options with:

target:~$ rs485conf /dev/ttymxc1 -h

Documentation for calling the IOCTL within c-code is described in the Linux kernel documentation: https:
//www.kernel.org/doc/Documentation/serial/serial-rs485.txt

The device tree representation for RS232 and RS485: https://git.phytec.de/linux-imx/tree/arch/arm64/
boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n331

7.3 Network
phyBOARD-Pollux-i.MX 8M Plus provides two ethernet interfaces. A gigabit Ethernet is provided by our
module and board.

Warning

The naming convention of the Ethernet interfaces in the hardware (ethernet0 and ethernet1) do not align
with the network interfaces (eth0 and eth1) in Linux. So, be aware of these differences:

ethernet1 = eth0
ethernet0 = eth1

All interfaces offer a standard Linux network port that can be programmed using the BSD socket interface.
The whole network configuration is handled by the systemd-networkd daemon. The relevant configuration
files can be found on the target in /lib/systemd/network/ as well as the BSP in meta-ampliphy/recipes-core/
systemd/systemd-conf.

IP addresses can be configured within *.network files. The default IP address and netmask for eth0 is:

eth0: 192.168.3.11/24

The DT Ethernet setup might be split into two files depending on your hardware configuration: the module
DT and the board-specific DT. The device tree set up for the FEC ethernet IP core where the ethernet PHY
is populated on the SoM can be found here: https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/
freescale/imx8mp-phycore-som.dtsi?h=v5.10.72_2.2.0-phy17#n41.

The device tree set up for EQOS Ethernet IP core where the PHY is populated on the
phyBOARD-Pollux can be found here: https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/
freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n141.

7.3.1 Network Environment Customization
U-boot network-environment

• To find the Ethernet settings in the target bootloader:

u-boot=> printenv ipaddr serverip netmask

• With your development host set to IP 192.168.3.10 and netmask 255.255.255.0, the target should
return:

Accessing Peripherals 47

https://www.kernel.org/doc/Documentation/serial/serial-rs485.txt
https://www.kernel.org/doc/Documentation/serial/serial-rs485.txt
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n331
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n331
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phycore-som.dtsi?h=v5.10.72_2.2.0-phy17#n41
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phycore-som.dtsi?h=v5.10.72_2.2.0-phy17#n41
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n141
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n141

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

u-boot=> printenv ipaddr serverip netmask
ipaddr=192.168.3.11
serverip=192.168.3.10
netmask=255.225.255.0

• If you need to make any changes:

u-boot=> setenv <parameter> <value>

<parameter> should be one of ipaddr, netmask, gatewayip or serverip. <value> will be the actual
value of the chosen parameter.

• The changes you made are temporary for now. To save these:

u-boot=> saveenv

Here you can also change the IP address to DHCP instead of using a static one.

• Configure:

u-boot=> setenv ip dhcp

• Set up paths for TFTP and NFS. A modification could look like this:

u-boot=> setenv nfsroot /home/user/nfssrc

Please note that these modifications will only affect the bootloader settings.

Tip

Variables like nfsroot and netargs can be overwritten by the U-boot External Environment. For netboot,
the external environment will be loaded from tftp. For example, to locally set the nfsroot variable in a
bootenv.txt file, locate the tftproot directory:

nfsroot=/home/user/nfssrc

There is no need to store the info on the target. Please note that this does not work for variables like
ipaddr or serveraddr as they need to be already set when the external environment is being loaded.

Kernel network-environment

• Find the ethernet settings for eth0 in the target kernel:

target:~$ ifconfig eth0
eth0 Link encap:Ethernet HWaddr 50:2D:F4:19:D6:33

UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

• Temporary adaption of the eth0 configuration:

target:~$ ifconfig eth0 192.168.3.11 netmask 255.255.255.0 up

Accessing Peripherals 48

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

7.3.2 WLAN
WLAN and Bluetooth on the phyBOARD-Pollux are provided by the PEB-WLBT-05 expansion card. The
PEB-WLBT-05 for phyBOARD-Pollux Quickstart Guide shows you how to install the PEB-WLBT-05.

Tip

With the BSP Version PD22.1 and newer, the PEB-WLBT-05 overlay needs to be activated first, other-
wise the PEB-WLBT-05 won’t be recognized.

target:~$ vi /boot/bootenv.txt

Afterwards the bootenv.txt file should look like this (it can also contain other devicetree overlays!):

overlays=imx8mp-phyboard-pollux-peb-wlbt-05.dtbo

The changes will be applied after a reboot:

target:~$ reboot

For further information about devicetree overlays, read the device tree chapter.

For WLAN and Bluetooth support, we use the Sterling-LWB module from LSR. This module supports
2,4 GHz bandwidth and can be run in several modes, like client mode, Access Point (AP) mode using
WEP, WPA, WPA2 encryption, and more. More information about the module can be found at https:
//connectivity-staging.s3.us-east-2.amazonaws.com/2019-09/CS-DS-SterlingLWB%20v7_2.pdf

Connecting to a WLAN Network

First set the correct regulatory domain for your country:

target:~$ iw reg set DE
target:~$ iw reg get

You will see:

country DE: DFS-ETSI
(2400 - 2483 @ 40), (N/A, 20), (N/A)
(5150 - 5250 @ 80), (N/A, 20), (N/A), NO-OUTDOOR
(5250 - 5350 @ 80), (N/A, 20), (0 ms), NO-OUTDOOR, DFS
(5470 - 5725 @ 160), (N/A, 26), (0 ms), DFS
(57000 - 66000 @ 2160), (N/A, 40), (N/A)

Set up the wireless interface:

target:~$ ip link
target:~$ ip link set up dev wlan0

Now you can scan for available networks:

target:~$ iw wlan0 scan | grep SSID

You can use a cross-platform supplicant with support for WEP, WPA, and WPA2 called wpa_supplicant
for an encrypted connection.

To do so, add the network-credentials to the file /etc/wpa_supplicant.conf:

Accessing Peripherals 49

https://connectivity-staging.s3.us-east-2.amazonaws.com/2019-09/CS-DS-SterlingLWB%20v7_2.pdf
https://connectivity-staging.s3.us-east-2.amazonaws.com/2019-09/CS-DS-SterlingLWB%20v7_2.pdf

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

country=DE
network={

ssid="<SSID>"
proto=WPA2
psk="<KEY>"

}

Now a connection can be established:

target:~$ wpa_supplicant -D nl80211 -c /etc/wpa_supplicant.conf -i wlan0 -B

This should result in the following output:

...
ENT-CONNECTED - Connection to 88:33:14:5d:db:b1 completed [id=0 id_str=]

To finish the configuration you can configure DHCP to receive an IP address (supported by most WLAN
access points). For other possible IP configurations, see section Changing the Network Configuration in the
L-813e.A12 Yocto Reference Manual (Hardknott).

First, create the directory:

target:~$ mkdir -p /etc/systemd/network/

Then add the following configuration snippet in /etc/systemd/network/10-wlan0.network:

file /etc/systemd/network/10-wlan0.network
[Match]
Name=wlan0

[Network]
DHCP=yes

Now, restart the network daemon so that the configuration takes effect:

target:~$ systemctl restart systemd-networkd

7.3.3 Bluetooth
Bluetooth is supported on phyBOARD-Pollux with the PEB-WLBT-05 expansion card. How this can be
activated is described in the WLAN section.

Bluetooth is connected to UART3 interface. More information about the module can be found at
https://connectivity-staging.s3.us-east-2.amazonaws.com/2019-09/CS-DS-SterlingLWB%20v7_2.pdf. The
Bluetooth device needs to be set up manually:

target:~$ hciconfig hci0 up

target:~$ hciconfig -a

hci0: Type: Primary Bus: UART
BD Address: 00:25:CA:2F:39:96 ACL MTU: 1021:8 SCO MTU: 64:1
UP RUNNING PSCAN
RX bytes:1392 acl:0 sco:0 events:76 errors:0

(continues on next page)

Accessing Peripherals 50

https://www.phytec.de/cdocuments/?doc=UIHsG
https://connectivity-staging.s3.us-east-2.amazonaws.com/2019-09/CS-DS-SterlingLWB%20v7_2.pdf

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

(continued from previous page)

TX bytes:1198 acl:0 sco:0 commands:76 errors:0
...

Now you can scan your environment for visible Bluetooth devices. Bluetooth is not visible during a default
startup.

target:~$ hcitool scan
Scanning ...

XX:XX:XX:XX:XX:XX <SSID>

Visibility

To activate visibility:

target:~$ hciconfig hci0 piscan

To disable visibility:

target:~$ hciconfig hci0 noscan

Connect

target:~$ bluetoothctl
[bluetooth]# discoverable on
Changing discoverable on succeeded
[bluetooth]# pairable on
Changing pairable on succeeded
[bluetooth]# agent on
Agent registered
[bluetooth]# default-agent
Default agent request successful
[bluetooth]# scan on
[NEW] Device XX:XX:XX:XX:XX:XX <name>
[bluetooth]# connect XX:XX:XX:XX:XX:XX

Bluetooth is connected to UART3 interface. More information about the module can be found at
https://connectivity-staging.s3.us-east-2.amazonaws.com/2019-09/CS-DS-SterlingLWB%20v7_2.pdf. The
Bluetooth device needs to be set up manually:

target:~$ hciconfig hci0 up

target:~$ hciconfig -a

hci0: Type: Primary Bus: UART
BD Address: 00:25:CA:2F:39:96 ACL MTU: 1021:8 SCO MTU: 64:1
UP RUNNING PSCAN
RX bytes:1392 acl:0 sco:0 events:76 errors:0
TX bytes:1198 acl:0 sco:0 commands:76 errors:0
...

Now you can scan your environment for visible Bluetooth devices. Bluetooth is not visible during a default
startup.

Accessing Peripherals 51

https://connectivity-staging.s3.us-east-2.amazonaws.com/2019-09/CS-DS-SterlingLWB%20v7_2.pdf

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

target:~$ hcitool scan
Scanning ...

XX:XX:XX:XX:XX:XX <SSID>

Visibility

To activate visibility:

target:~$ hciconfig hci0 piscan

To disable visibility:

target:~$ hciconfig hci0 noscan

Connect

target:~$ bluetoothctl
[bluetooth]# discoverable on
Changing discoverable on succeeded
[bluetooth]# pairable on
Changing pairable on succeeded
[bluetooth]# agent on
Agent registered
[bluetooth]# default-agent
Default agent request successful
[bluetooth]# scan on
[NEW] Device XX:XX:XX:XX:XX:XX <name>
[bluetooth]# connect XX:XX:XX:XX:XX:XX

Note

If the connection fails with the error message: “Failed to connect: org.bluez.Error.Failed” try restarting
PulseAudio with:
target:~$ pulseaudio --start

7.4 SD/MMC Card
The i.MX 8M Plus supports a slot for Secure Digital Cards and MultiMedia Cards to be used as general-
purpose block devices. These devices can be used in the same way as any other block device.

Warning

These kinds of devices are hot-pluggable. Nevertheless, you must ensure not to unplug the device while
it is still mounted. This may result in data loss!

After inserting an SD/MMC card, the kernel will generate new device nodes in /dev. The full device can be
reached via its /dev/mmcblk1 device node. SD/MMC card partitions will show up as:

Accessing Peripherals 52

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

/dev/mmcblk1p<Y>

<Y> counts as the partition number starting from 1 to the max count of partitions on this device. The
partitions can be formatted with any kind of file system and also handled in a standard manner, e.g. the
mount and umount command work as expected.

Tip

These partition device nodes will only be available if the card contains a valid partition table (”hard disk”
like handling). If no partition table is present, the whole device can be used as a file system (”floppy”
like handling). In this case, /dev/mmcblk1 must be used for formatting and mounting. The cards are
always mounted as being writable.

DT configuration for the MMC (SD card slot) interface can be found here: https://git.phytec.de/linux-imx/
tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n367

DT configuration for the eMMC interface can be found here: https://git.phytec.de/linux-imx/tree/arch/
arm64/boot/dts/freescale/imx8mp-phycore-som.dtsi?h=v5.10.72_2.2.0-phy17#n220

7.5 eMMC Devices
PHYTEC modules like phyCORE-i.MX 8M Plus is populated with an eMMC memory chip as the main
storage. eMMC devices contain raw MLC memory cells combined with a memory controller that handles
ECC and wear leveling. They are connected via an SD/MMC interface to the i.MX 8M Plus and are
represented as block devices in the Linux kernel like SD cards, flash drives, or hard disks.

The electric and protocol specifications are provided by JEDEC (https://www.jedec.org/
standards-documents/technology-focus-areas/flash-memory-ssds-ufs-emmc/e-mmc). The eMMC man-
ufacturer’s datasheet is relatively short and meant to be read together with the supported version of the
JEDEC eMMC standard.

PHYTEC currently utilizes the eMMC chips with JEDEC Version 5.0 and 5.1

7.5.1 Extended CSD Register
eMMC devices have an extensive amount of extra information and settings that are available via the Extended
CSD registers. For a detailed list of the registers, see manufacturer datasheets and the JEDEC standard.

In the Linux user space, you can query the registers:

target:~$ mmc extcsd read /dev/mmcblk2

You will see:

===
Extended CSD rev 1.7 (MMC 5.0)

===

Card Supported Command sets [S_CMD_SET: 0x01]
[...]

Accessing Peripherals 53

https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n367
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n367
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phycore-som.dtsi?h=v5.10.72_2.2.0-phy17#n220
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phycore-som.dtsi?h=v5.10.72_2.2.0-phy17#n220
https://www.jedec.org/standards-documents/technology-focus-areas/flash-memory-ssds-ufs-emmc/e-mmc
https://www.jedec.org/standards-documents/technology-focus-areas/flash-memory-ssds-ufs-emmc/e-mmc

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

7.5.2 Enabling Background Operations (BKOPS)
In contrast to raw NAND Flash, an eMMC device contains a Flash Transfer Layer (FTL) that handles the
wear leveling, block management, and ECC of the raw MLC cells. This requires some maintenance tasks
(for example erasing unused blocks) that are performed regularly. These tasks are called Background
Operations (BKOPS).

By default (depending on the chip), the background operations may or may not be executed periodically,
impacting the worst-case read and write latency.

The JEDEC Standard has specified a method since version v4.41 that the host can issue BKOPS manually.
See the JEDEC Standard chapter Background Operations and the description of registers BKOPS_EN (Reg:
163) and BKOPS_START (Reg: 164) in the eMMC datasheet for more details.

Meaning of Register BKOPS_EN (Reg: 163) Bit MANUAL_EN (Bit 0):

• Value 0: The host does not support the manual trigger of BKOPS. Device write performance suffers.

• Value 1: The host does support the manual trigger of BKOPS. It will issue BKOPS from time to time
when it does not need the device.

The mechanism to issue background operations has been implemented in the Linux kernel since v3.7. You
only have to enable BKOPS_EN on the eMMC device (see below for details).

The JEDEC standard v5.1 introduces a new automatic BKOPS feature. It frees the host to trigger the
background operations regularly because the device starts BKOPS itself when it is idle (see the description
of bit AUTO_EN in register BKOPS_EN (Reg: 163)).

The userspace tool mmc does not currently support enabling automatic BKOPS features.

• To check whether BKOPS_EN is set, execute:

target:~$ mmc extcsd read /dev/mmcblk2 | grep BKOPS_EN

The output will be, for example:

Enable background operations handshake [BKOPS_EN]: 0x01
#OR
Enable background operations handshake [BKOPS_EN]: 0x00

Where value 0x00 means BKOPS_EN is disabled and device write performance suffers. Where value
0x01 means BKOPS_EN is enabled and the host will issue background operations from time to time.

• To set the BKOPS_EN bit, execute:

target:~$ mmc bkops enable /dev/mmcblk2

• To ensure that the new setting is taken over and the kernel triggers BKOPS by itself, shut down the
system:

target:~$ poweroff

Tip

The BKOPS_EN bit is one-time programmable only. It cannot be reversed.

Accessing Peripherals 54

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

7.5.3 Reliable Write
There are two different Reliable Write options:

1. Reliable Write option for a whole eMMC device/partition.

2. Reliable Write for single write transactions.

Tip

Do not confuse eMMC partitions with partitions of a DOS, MBR, or GPT partition table (see the previous
section).

The first Reliable Write option is mostly already enabled on the eMMCs mounted on the phyCORE-i.MX
8M Plus SoMs. To check this on the running target:

target:~$ mmc extcsd read /dev/mmcblk2 | grep -A 5 WR_REL_SET
Write reliability setting register [WR_REL_SET]: 0x1f
user area: the device protects existing data if a power failure occurs during a write o
peration
partition 1: the device protects existing data if a power failure occurs during a write
operation
partition 2: the device protects existing data if a power failure occurs during a write
operation
partition 3: the device protects existing data if a power failure occurs during a write
operation
partition 4: the device protects existing data if a power failure occurs during a write
operation
--
Device supports writing EXT_CSD_WR_REL_SET
Device supports the enhanced def. of reliable write

Otherwise, it can be enabled with the mmc tool:

target:~$ mmc --help

[...]
mmc write_reliability set <-y|-n> <partition> <device>

The second Reliable Write option is the configuration bit Reliable Write Request parameter (bit 31) in
command CMD23. It has been used in the kernel since v3.0 by file systems, e.g. ext4 for the journal and
user space applications such as fdisk for the partition table. In the Linux kernel source code, it is handled
via the flag REQ_META.

Conclusion: ext4 file system with mount option data=journal should be safe against power cuts. The file
system check can recover the file system after a power failure, but data that was written just before the
power cut may be lost. In any case, a consistent state of the file system can be recovered. To ensure data
consistency for the files of an application, the system functions fdatasync or fsync should be used in the
application.

7.5.4 Resizing ext4 Root Filesystem
When flashing the sdcard image to eMMC the ext4 root partition is not extended to the end of the eMMC.
parted can be used to expand the root partition. The example works for any block device such as eMMC,
SD card, or hard disk.

Accessing Peripherals 55

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

• Get the current device size:

target:~$ parted /dev/mmcblk2 print

• The output looks like this:

Model: MMC Q2J55L (sd/mmc)
Disk /dev/mmcblk2: 7617MB
Sect[1799.850385] mmcblk2: p1 p2
or size (logical/physical): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags
1 4194kB 72.4MB 68.2MB primary fat16 boot, lba
2 72.4MB 537MB 465MB primary ext4

• Use parted to resize the root partition to the max size of the device:

target:~$ parted /dev/mmcblk2 resizepart 2 100%
Information: You may need to update /etc/fstab.

target:~$ parted /dev/mmcblk2 print
Model: MMC Q2J55L (sd/mmc)
Disk /dev/mmcblk2: 7617MB
Sector size (logical/physical): 512[1974.191657] mmcblk2: p1 p2
B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags
1 4194kB 72.4MB 68.2MB primary fat16 boot, lba
2 72.4MB 7617MB 7545MB primary ext4

Increasing the filesystem size can be done while it is mounted. But you can also boot the board from an SD
card and then resize the file system on the eMMC partition while it is not mounted.

• Resize the filesystem to a new partition size:

target:~$ resize2fs /dev/mmcblk2p2
resize2fs 1.46.1 (9-Feb-2021)
Filesystem at /dev/mmcblk2p2 is mounted on /; on-line resizing required
[131.609512] EXT4-fs (mmcblk2p2): resizing filesystem
from 454136 to 7367680 blocks
old_desc_blocks = 4, new_desc_blocks = 57
[131.970278] EXT4-fs (mmcblk2p2): resized filesystem to 7367680
The filesystem on /dev/mmcblk2p2 is now 7367680 (1k) blocks long

7.5.5 Enable pseudo-SLC Mode
eMMC devices use MLC memory cells (https://en.wikipedia.org/wiki/Multi-level_cell) to store the data.
Compared with SLC memory cells used in NAND Flash, MLC memory cells have lower reliability and a
higher error rate at lower costs.

If you prefer reliability over storage capacity, you can enable the pseudo-SLC mode or SLC mode. The
method used here employs the enhanced attribute, described in the JEDEC standard, which can be set for

Accessing Peripherals 56

https://en.wikipedia.org/wiki/Multi-level_cell

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

continuous regions of the device. The JEDEC standard does not specify the implementation details and the
guarantees of the enhanced attribute. This is left to the chipmaker. For the Micron chips, the enhanced
attribute increases the reliability but also halves the capacity.

Warning

When enabling the enhanced attribute on the device, all data will be lost.

The following sequence shows how to enable the enhanced attribute.

• First obtain the current size of the eMMC device with:

target:~$ parted -m /dev/mmcblk2 unit B print

You will receive:

BYT;
/dev/mmcblk2:63652757504B:sd/mmc:512:512:unknown:MMC S0J58X:;

As you can see this device has 63652757504 Byte = 60704 MiB.

• To get the maximum size of the device after pseudo-SLC is enabled use:

target:~$ mmc extcsd read /dev/mmcblk2 | grep ENH_SIZE_MULT -A 1

which shows, for example:

Max Enhanced Area Size [MAX_ENH_SIZE_MULT]: 0x000764
i.e. 3719168 KiB
--
Enhanced User Data Area Size [ENH_SIZE_MULT]: 0x000000
i.e. 0 KiB

Here the maximum size is 3719168 KiB = 3632 MiB.

• Now, you can set enhanced attribute for the whole device, e.g. 3719168 KiB, by typing:

target:~$ mmc enh_area set -y 0 3719168 /dev/mmcblk2

You will get:

Done setting ENH_USR area on /dev/mmcblk2
setting OTP PARTITION_SETTING_COMPLETED!
Setting OTP PARTITION_SETTING_COMPLETED on /dev/mmcblk2 SUCCESS
Device power cycle needed for settings to take effect.
Confirm that PARTITION_SETTING_COMPLETED bit is set using 'extcsd read' after power cycle

• To ensure that the new setting has taken over, shut down the system:

target:~$ poweroff

and perform a power cycle. It is recommended that you verify the settings now.

• First, check the value of ENH_SIZE_MULT which must be 3719168 KiB:

Accessing Peripherals 57

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

target:~$ mmc extcsd read /dev/mmcblk2 | grep ENH_SIZE_MULT -A 1

You should receive:

Max Enhanced Area Size [MAX_ENH_SIZE_MULT]: 0x000764
i.e. 3719168 KiB
--
Enhanced User Data Area Size [ENH_SIZE_MULT]: 0x000764
i.e. 3719168 KiB

• Finally, check the size of the device:

target:~$ parted -m /dev/mmcblk2 unit B print
BYT;
/dev/mmcblk2:31742492672B:sd/mmc:512:512:unknown:MMC S0J58X:;

7.5.6 Erasing the Device
It is possible to erase the eMMC device directly rather than overwriting it with zeros. The eMMC block
management algorithm will erase the underlying MLC memory cells or mark these blocks as discard. The
data on the device is lost and will be read back as zeros.

• After booting from SD Card execute:

target:~$ blkdiscard -f --secure /dev/mmcblk2

The option –secure ensures that the command waits until the eMMC device has erased all blocks. The
-f (force) option disables all checking before erasing and it is needed when the eMMC device contains
existing partitions with data.

Tip

target:~$ dd if=/dev/zero of=/dev/mmcblk2 conv=fsync

also destroys all information on the device, but this command is bad for wear leveling and takes much
longer!

7.5.7 eMMC Boot Partitions
An eMMC device contains four different hardware partitions: user, boot1, boot2, and rpmb.

The user partition is called the User Data Area in the JEDEC standard and is the main storage partition.
The partitions boot1 and boot2 can be used to host the bootloader and are more reliable. Which partition
the i.MX 8M Plus uses to load the bootloader is controlled by the boot configuration of the eMMC device.
The partition rpmb is a small partition and can only be accessed via a trusted mechanism.

Furthermore, the user partition can be divided into four user-defined General Purpose Area Partitions. An
explanation of this feature exceeds the scope of this document. For further information, see the JEDEC
Standard Chapter 7.2 Partition Management.

Tip

Do not confuse eMMC partitions with partitions of a DOS, MBR, or GPT partition table.

Accessing Peripherals 58

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

The current PHYTEC BSP does not use the extra partitioning feature of eMMC devices. The U-Boot is
flashed at the beginning of the user partition. The U-Boot environment is placed at a fixed location after the
U-Boot. An MBR partition table is used to create two partitions, a FAT32 boot, and ext4 rootfs partition.
They are located right after the U-Boot and the U-Boot environment. The FAT32 boot partition contains
the kernel and device tree.

With eMMC flash storage it is possible to use the dedicated boot partitions for redundantly storing the
bootloader. The U-Boot environment still resides in the user area before the first partition. The user area
also still contains the bootloader which the image first shipped during its initialization process. Below is an
example, to flash the bootloader to one of the two boot partitions and switch the boot device via userspace
commands.

7.5.8 Via userspace Commands
On the host, run:

host:~$ scp imx-boot root@192.168.3.11:/tmp/

The partitions boot1 and boot2 are read-only by default. To write to them from user space, you have to
disable force_ro in the sysfs.

To manually write the bootloader to the eMMC boot partitions, first disable the write protection:

target:~$ echo 0 > /sys/block/mmcblk2boot0/force_ro
target:~$ echo 0 > /sys/block/mmcblk2boot1/force_ro

Write the bootloader to the eMMC boot partitions:

target:~$ dd if=/tmp/imx-boot of=/dev/mmcblk2boot0
target:~$ dd if=/tmp/imx-boot of=/dev/mmcblk2boot1

The following table is for the offset of the i.MX 8M Plus SoC:

SoC Offset User Area Offset Boot Partition eMMC Device Bootloader Filename
i.MX 8M Plus 32 kiB 0 kiB /dev/mmcblk2 imx-boot

After that set the boot partition from user space using the mmc tool:

(for ‘boot0’) :

target:~$ mmc bootpart enable 1 0 /dev/mmcblk2

(for ‘boot1’) :

target:~$ mmc bootpart enable 2 0 /dev/mmcblk2

To disable booting from the eMMC boot partitions simply enter the following command:

target:~$ mmc bootpart enable 0 0 /dev/mmcblk2

To choose back to the user area u-boot environment:

target:~$ mmc bootpart enable 7 0 /dev/mmcblk2

Accessing Peripherals 59

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

7.5.9 Resizing ext4 Root Filesystem
fdisk can be used to expand the root filesystem. The example works for any block device such as eMMC,
SD Card, or hard disk.

• Get the current device size:

target:~$ fdisk -l /dev/mmcblk2

• The output looks like:

Disk /dev/mmcblk2: 7264 MB, 7616856064 bytes, 14876672 sectors 116224 cylinders, 4 heads,␣
↪→32 sectors/track
Units: sectors of 1 * 512 = 512 bytes

Device Boot StartCHS EndCHS StartLBA EndLBA Sectors Size Id␣
↪→Type
/dev/mmcblk2p1 * 128,0,1 1023,3,32 16384 140779 124396 60.7M c␣
↪→Win95 FAT32 (LBA)
/dev/mmcblk2p2 1023,3,32 1023,3,32 141312 2192013 2050702 1001M 83␣
↪→Linux

• Use fdisk to delete and create a partition with a max size of the device:

target:~$ fdisk /dev/mmcblk2

The number of cylinders for this disk is set to 116224.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other OSs

(e.g., DOS FDISK, OS/2 FDISK)

Command (m for help): p
Disk /dev/mmcblk2: 7264 MB, 7616856064 bytes, 14876672 sectors
116224 cylinders, 4 heads, 32 sectors/track
Units: sectors of 1 * 512 = 512 bytes

Device Boot StartCHS EndCHS StartLBA EndLBA Sectors Size Id␣
↪→Type
/dev/mmcblk2p1 * 128,0,1 1023,3,32 16384 140779 124396 60,7M c␣
↪→Win95 FAT32 (LBA)
/dev/mmcblk2p2 1023,3,32 1023,3,32 141312 2192013 2050702 1001M 83␣
↪→Linux

Command (m for help): d
Partition number (1-4): 2

Command (m for help): p
Disk /dev/mmcblk2: 7264 MB, 7616856064 bytes, 14876672 sectors
116224 cylinders, 4 heads, 32 sectors/track
Units: sectors of 1 * 512 = 512 bytes

Device Boot StartCHS EndCHS StartLBA EndLBA Sectors Size Id Type
/dev/mmcblk2p1 * 128,0,1 1023,3,32 16384 140779 124396 60.7M c␣

(continues on next page)

Accessing Peripherals 60

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

(continued from previous page)

↪→Win95 FAT32 (LBA)

Command (m for help): n
Partition type

p primary partition (1-4)
e extended

p
Partition number (1-4): 2
First sector (32-14876671, default 32): 141456
Last sector or +size{,K,M,G,T} (141456-14876671, default 14876671):
Using default value 14876671

Command (m for help): p
Disk /dev/mmcblk2: 7264 MB, 7616856064 bytes, 14876672 sectors
116224 cylinders, 4 heads, 32 sectors/track
Units: sectors of 1 * 512 = 512 bytes

Device Boot StartCHS EndCHS StartLBA EndLBA Sectors Size Id Type
/dev/mmcblk2p1 * 128,0,1 1023,3,32 16384 140779 124396 60.7M c␣
↪→Win95 FAT32 (LBA)
/dev/mmcblk2p2 1023,3,32 1023,3,32 141456 14876671 14735216 7194M 83␣
↪→Linux

Increasing the file system size can be done while it is mounted. An online resizing operation is performed.
But you can also boot the board from an SD card and then resize the file system on the eMMC partition
while it is not mounted. Furthermore, the board has to be rebooted so that the new partition table will be
read.

7.6 SPI Master
The i.MX 8M Plus controller has a FlexSPI and an ECSPI IP core included. The FlexSPI host controller
supports two SPI channels with up to 4 devices. Each channel supports Single/Dual/Quad/Octal mode
data transfer (1/2/4/8 bidirectional data lines). The ECSPI controller supports 3 SPI interfaces with one
dedicated chip selected for each interface. As chip selects should be realized with GPIOs, more than one
device on each channel is possible.

7.6.1 SPI NOR Flash
phyCORE-i.MX 8M Plus is equipped with a QSPI NOR Flash which connects to the i.MX 8M Plus’s
FlexSPI interface. The QSPI NOR Flash is suitable for booting. Please see different sections for flashing
and bootmode setup. Due to limited space on the SPI NOR Flash, only the bootloader is stored inside. By
default, the kernel, device tree, and rootfs are taken from eMMC.

The Bootloader does detect with the help of the EEPROM Introspection data if an SPI flash is mounted
or not. If no SPI flash is mounted a device tree overlay is applied with the expansion command to disable
the SPI flash device tree node during boot. If no introspection data is available the SPI NOR flash node is
always enabled. Find more information in the device tree overlay section.

The bootloader also passes the SPI MTD partition table to Linux by fixing up the device tree based on the
mtdparts boot parameter. The default partition layout in the BSP is set to:

mtdparts=30bb0000.spi:3840k(u-boot),128k(env),128k(env_redund),-(none)

Accessing Peripherals 61

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

This is a bootloader environment variable that is defined here and can be changed during runtime. From
Linux userspace, the NOR Flash partitions are accessible via /dev/mtd<N> devices where <N> is the MTD
device number associated with the NOR flash partition to access. To find the correct MTD device number
for a partition, run on the target:

root@phyboard-pollux-imx8mp-3:~$ mtdinfo --all
Count of MTD devices: 4
Present MTD devices: mtd0, mtd1, mtd2, mtd3
Sysfs interface supported: yes

mtd0
Name: u-boot
Type: nor
Eraseblock size: 65536 bytes, 64.0 KiB
Amount of eraseblocks: 60 (3932160 bytes, 3.7 MiB)
Minimum input/output unit size: 1 byte
Sub-page size: 1 byte
Character device major/minor: 90:0
Bad blocks are allowed: false
Device is writable: true

mtd1
Name: env
Type: nor
Eraseblock size: 65536 bytes, 64.0 KiB
Amount of eraseblocks: 2 (131072 bytes, 128.0 KiB)
Minimum input/output unit size: 1 byte
Sub-page size: 1 byte
Character device major/minor: 90:2
Bad blocks are allowed: false
Device is writable: true

mtd2
Name: env_redund
Type: nor
Eraseblock size: 65536 bytes, 64.0 KiB
Amount of eraseblocks: 2 (131072 bytes, 128.0 KiB)
Minimum input/output unit size: 1 byte
Sub-page size: 1 byte
Character device major/minor: 90:4
Bad blocks are allowed: false
Device is writable: true

mtd3
Name: none
Type: nor
Eraseblock size: 65536 bytes, 64.0 KiB
Amount of eraseblocks: 448 (29360128 bytes, 28.0 MiB)
Minimum input/output unit size: 1 byte
Sub-page size: 1 byte
Character device major/minor: 90:6
Bad blocks are allowed: false
Device is writable: true

Accessing Peripherals 62

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

It lists all MTD devices and the corresponding partition names. The flash node is defined inside of the SPI
master node in the module DTS. The SPI node contains all devices connected to this SPI bus which is in
this case only the SPI NOR Flash.

The definition of the SPI master node in the device tree can be found here:

https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phycore-som.dtsi?h=v5.10.
72_2.2.0-phy17#n72

7.7 GPIOs
The phyBOARD-Pollux has a set of pins especially dedicated to user I/Os. Those pins are connected directly
to i.MX 8M Plus pins and are muxed as GPIOs. They are directly usable in Linux userspace. The processor
has organized its GPIOs into five banks of 32 GPIOs each (GPIO1 – GPIO5) GPIOs. gpiochip0, gpiochip32,
gpiochip64, gpiochip96, and gpiochip128 are the sysfs representation of these internal i.MX 8M Plus GPIO
banks GPIO1 – GPIO5.

The GPIOs are identified as GPIO<X>_<Y> (e.g. GPIO5_07). <X> identifies the GPIO bank and
counts from 1 to 5, while <Y> stands for the GPIO within the bank. <Y> is being counted from 0 to 31
(32 GPIOs on each bank).

By contrast, the Linux kernel uses a single integer to enumerate all available GPIOs in the system. The
formula to calculate the right number is:

Linux GPIO number: <N> = (<X> - 1) * 32 + <Y>

Accessing GPIOs from userspace will be done using the libgpiod. It provides a library and tools for interacting
with the Linux GPIO character device. Examples of some usages of various tools:

• Detecting the gpiochips on the chip:

target:~$ gpiodetect
gpiochip0 [30200000.gpio] (32 lines)
gpiochip1 [30210000.gpio] (32 lines)
gpiochip2 [30220000.gpio] (32 lines)
gpiochip3 [30230000.gpio] (32 lines)
gpiochip4 [30240000.gpio] (32 lines)

• Show detailed information about the gpiochips. Like their names, consumers, direction, active state,
and additional flags:

target:~$ gpioinfo gpiochip0

• Read the value of a GPIO (e.g GPIO 20 from chip0):

target:~$ gpioget gpiochip0 20

• Set the value of GPIO 20 on chip0 to 0 and exit tool:

target:~$ gpioset --mode=exit gpiochip0 20=0

• Help text of gpioset shows possible options:

target:~$ gpioset --help
Usage: gpioset [OPTIONS] <chip name/number> <offset1>=<value1> <offset2>=<value2> ...
Set GPIO line values of a GPIO chip

(continues on next page)

Accessing Peripherals 63

https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phycore-som.dtsi?h=v5.10.72_2.2.0-phy17#n72
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phycore-som.dtsi?h=v5.10.72_2.2.0-phy17#n72

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

(continued from previous page)

Options:
-h, --help: display this message and exit
-v, --version: display the version and exit
-l, --active-low: set the line active state to low
-m, --mode=[exit|wait|time|signal] (defaults to 'exit'):

tell the program what to do after setting values
-s, --sec=SEC: specify the number of seconds to wait (only valid for --mode=time)
-u, --usec=USEC: specify the number of microseconds to wait (only valid for --

↪→mode=time)
-b, --background: after setting values: detach from the controlling terminal

Modes:
exit: set values and exit immediately
wait: set values and wait for user to press ENTER
time: set values and sleep for a specified amount of time
signal: set values and wait for SIGINT or SIGTERM

Note: the state of a GPIO line controlled over the character device reverts to default
when the last process referencing the file descriptor representing the device file exits.
This means that it's wrong to run gpioset, have it exit and expect the line to continue
being driven high or low. It may happen if given pin is floating but it must be interpreted
as undefined behavior.

Warning

Some of the user IOs are used for special functions. Before using a user IO, refer to the schematic or the
hardware manual of your board to ensure that it is not already in use.

7.7.1 GPIOs via sysfs

Warning

Accessing gpios via sysfs is deprecated and we encourage to use libgpiod instead.

Support to access GPIOs via sysfs is not enabled by default any more. It is only possible with manually
enabling CONFIG_GPIO_SYSFS in the kernel configuration. To make CONFIG_GPIO_SYSFS visible in menuconfig
the option CONFIG_EXPERT has to be enabled first.

You can also add this option for example to the defconfig you use in arch/arm64/configs/ in the linux kernel
sources. For our NXP based releases, this could be for example imx8_phytec_distro.config:

..
CONFIG_EXPERT=y
CONFIG_GPIO_SYSFS=y
..

Otherwise you can create a new config fragment. This is described in our Yocto Reference Manual.

Accessing Peripherals 64

https://www.phytec.de/cdocuments/?doc=UIHsG#YoctoReferenceManualHardknottL813e-A12-KernelandBootloaderConfiguration

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

7.8 LEDs
If any LEDs are connected to GPIOs, you have the possibility to access them by a special LED driver interface
instead of the general GPIO interface (section GPIOs). You will then access them using /sys/class/leds/
instead of /sys/class/gpio/. The maximum brightness of the LEDs can be read from the max_brightness
file. The brightness file will set the brightness of the LED (taking a value from 0 up to max_brightness).
Most LEDs do not have hardware brightness support and will just be turned on by all non-zero brightness
settings.

Below is a simple example.

To get all available LEDs, type:

target:~$ ls /sys/class/leds
mmc1::@ mmc2::@ user-led1@ user-led2@ user-led3@

Here the LEDs blue-mmc, green-heartbeat, and red-emmc are on the phyBOARD-Pollux.

• To toggle the LEDs ON:

target:~$ echo 255 > /sys/class/leds/user-led1/brightness

• To toggle OFF:

target:~$ echo 0 > /sys/class/leds/user-led1/brightness

Device tree configuration for the User I/O configuration can be found here: https://git.phytec.de/linux-imx/
tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n216

7.9 I²C Bus
The i.MX 8M Plus contains several Multimaster fast-mode I²C modules. PHYTEC boards provide plenty
of different I²C devices connected to the I²C modules of the i.MX 8M Plus. This section describes the basic
device usage and its DT representation of some I²C devices integrated into our phyBOARD-Pollux.

The device tree node for i2c contains settings such as clock-frequency to set the bus frequency and the pin
control settings including scl-gpios and sda-gpios which are alternate pin configurations used for bus recovery.

General I²C1 bus configuration (e.g. imx8mp-phycore-som.dtsi): https://git.phytec.de/linux-imx/tree/
arch/arm64/boot/dts/freescale/imx8mp-phycore-som.dtsi?h=v5.10.72_2.2.0-phy17#n105

General I²C2 bus configuration (e.g. imx8mp-phyboard-pollux-rdk.dts) https://git.phytec.de/linux-imx/
tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n201

7.10 EEPROM
On the phyCORE-i.MX8MP there is an i2c EEPROM flash populated. It has two addresses. The main
EEPROM space (bus: I2C-0 address: 0x51) and the ID-page (bus: I2C-0 address: 0x59) can be accessed via
the sysfs interface in Linux. The first 256 bytes of the main EEPROM and the ID-page are used for board
detection and must not be overwritten. Overwriting reserved spaces will result in boot issues.

Accessing Peripherals 65

https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n216
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n216
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phycore-som.dtsi?h=v5.10.72_2.2.0-phy17#n105
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phycore-som.dtsi?h=v5.10.72_2.2.0-phy17#n105
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n201
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n201

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

7.10.1 I2C EEPROM on phyCORE-i.MX8MP

Warning

The EEPROM ID page (bus: I2C-0 addr: 0x59) and the first 265 bytes of the normal EEPROM area
(bus: I2C-0 addr: 0x51) should not be erased or overwritten. As this will influence the behavior of the
bootloader. The board might not boot correctly anymore.

The I2C EEPROM on the phyCORE-i.MX8MP SoM is connected to I2C address 0x51 on the I2C-0 bus. It
is possible to read and write directly to the device populated:

target:~$ hexdump -c /sys/class/i2c-dev/i2c-0/device/0-0051/eeprom

To read and print the first 1024 bytes of the EEPROM as a hex number, execute:

target:~$ dd if=/sys/class/i2c-dev/i2c-0/device/0-0051/eeprom bs=1 count=1024 | od -x

To fill the 4KiB EEPROM (bus: I2C-0 addr: 0x51) with zeros leaving out the EEPROM data use:

target:~$ dd if=/dev/zero of=/sys/class/i2c-dev/i2c-0/device/0-0051/eeprom seek=1 bs=256 count=15

7.10.2 EEPROM SoM Detection
The I2C EEPROM, populated on the phyCORE-i.MX8MP, has a separate ID page that is addressable over
I2C address 0x59 on bus 0 and a normal area that is addressable over I2C address 0x51 on bus 0. PHYTEC
uses this data area of 32 Bytes to store information about the SoM. This includes PCB revision and mounting
options.

The EEPROM data is read at a really early stage during startup. It is used to select the correct RAM
configuration. This makes it possible to use the same bootloader image for different RAM sizes and choose
the correct DTS overlays automatically.

If the EEPROM ID page data and the first 265 bytes of the normal area are deleted, the bootloader will fall
back to the phyCORE-i.MX8MP Kit RAM setup, which is 2GiB RAM.

Warning

The EEPROM ID page (bus: I2C-0 addr: 0x59) and the first 265 bytes of the normal EEPROM area
(bus: I2C-0 addr: 0x51) should not be erased or overwritten. As this will influence the behavior of the
bootloader. The board might not boot correctly anymore.

SoMs that are flashed with data format API revision 2 will print out information about the module in the
early stage.

7.10.3 Rescue EEPROM Data
The hardware introspection data is pre-written on both EEPROM data spaces. If you have accidentally
deleted or overwritten the normal area, you can copy the hardware introspection from the ID area to the
normal area.

target:~$ dd if=/sys/class/i2c-dev/i2c-0/device/0-0059/eeprom of=/sys/class/i2c-dev/i2c-0/device/
↪→0-0051/eeprom bs=1

Accessing Peripherals 66

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

Note

If you deleted both EEPROM spaces, please contact our support!

DT representation, e.g. in phyCORE-i.MX 8M Plus file imx8mp-phycore-som.dtsi can be found in our
PHYTEC git: https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phycore-som.
dtsi?h=v5.10.72_2.2.0-phy17#n201

7.11 RTC
RTCs can be accessed via /dev/rtc*. Because PHYTEC boards have often more than one RTC, there might
be more than one RTC device file.

• To find the name of the RTC device, you can read its sysfs entry with:

target:~$ cat /sys/class/rtc/rtc*/name

• You will get, for example:

rtc-rv3028 0-0052
snvs_rtc 30370000.snvs:snvs-rtc-lp

Tip

This will list all RTCs including the non-I²C RTCs. Linux assigns RTC device IDs based on the device
tree/aliases entries if present.

Date and time can be manipulated with the hwclock tool and the date command. To show the current date
and time set on the target:

target:~$ date
Thu Jan 1 00:01:26 UTC 1970

Change the date and time with the date command. The date command sets the time with the following
syntax “YYYY-MM-DD hh:mm:ss (+|-)hh:mm”:

target:~$ date -s "2022-03-02 11:15:00 +0100"
Wed Mar 2 10:15:00 UTC 2022

Note

Your timezone (in this example +0100) may vary.

Using the date command does not change the time and date of the RTC, so if we were to restart the target
those changes would be discarded. To write to the RTC we need to use the hwclock command. Write the
current date and time (set with the date command) to the RTC using the hwclock tool and reboot the target
to check if the changes were applied to the RTC:

target:~$ hwclock -w
target:~$ reboot

(continues on next page)

Accessing Peripherals 67

https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phycore-som.dtsi?h=v5.10.72_2.2.0-phy17#n201
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phycore-som.dtsi?h=v5.10.72_2.2.0-phy17#n201

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

(continued from previous page)

.

.

.
target:~$ date
Wed Mar 2 10:34:06 UTC 2022

To set the time and date from the RTC use:

target:~$ date
Thu Jan 1 01:00:02 UTC 1970
target:~$ hwclock -s
target:~$ date
Wed Mar 2 10:45:01 UTC 2022

7.11.1 RTC Wakealarm
It is possible to issue an interrupt from the RTC to wake up the system. The format uses the Unix epoch
time, which is the number of seconds since UTC midnight on 1 January 1970. To wake up the system after
4 minutes from suspend to ram state, type:

target:~$ echo "+240" > /sys/class/rtc/rtc0/wakealarm
target:~$ echo mem > /sys/power/state

Note

Internally the wake alarm time will be rounded up to the next minute since the alarm function doesn’t
support seconds.

DT representation for I²C RTCs: https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/
imx8mp-phycore-som.dtsi?h=v5.10.72_2.2.0-phy17#n207

7.12 USB Host Controller
The USB controller of the i.MX 8M Plus SoC provides a low-cost connectivity solution for numerous consumer
portable devices by providing a mechanism for data transfer between USB devices with a line/bus speed of
up to 4 Gbit/s (SuperSpeed ‘SS’). The USB subsystem has two independent USB controller cores. Both
cores are capable of acting as a USB peripheral device or a USB host. Each is connected to a USB 3.0 PHY.

The unified BSP includes support for mass storage devices and keyboards. Other USB-related device drivers
must be enabled in the kernel configuration on demand. Due to udev, all mass storage devices connected
get unique IDs and can be found in /dev/disk/by-id. These IDs can be used in /etc/fstab to mount the
different USB memory devices in different ways.

DT representation for USB Host: https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/
imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n341

7.13 CAN FD
The phyBOARD-Pollux two flexCAN interfaces supporting CAN FD. They are supported by the Linux
standard CAN framework which builds upon then the Linux network layer. Using this framework, the CAN
interfaces behave like an ordinary Linux network device, with some additional features special to CAN.

Accessing Peripherals 68

https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phycore-som.dtsi?h=v5.10.72_2.2.0-phy17#n207
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phycore-som.dtsi?h=v5.10.72_2.2.0-phy17#n207
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n341
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n341

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

More information can be found in the Linux Kernel documentation: https://www.kernel.org/doc/html/
latest/networking/can.html

• Use:

target:~$ ip link

to see the state of the interfaces. The two CAN interfaces should show up as can0 and can1.

• To get information on can0, such as bit rate and error counters, type:

target:~$ ip -d -s link show can0

The information for can0 will look like:

2: can0: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc pfifo_fast state UNKNOWN mode DEFAULT group␣
↪→default qlen 10

link/can promiscuity 0 minmtu 0 maxmtu 0
can state ERROR-ACTIVE (berr-counter tx 0 rx 0) restart-ms 0

bitrate 500000 sample-point 0.875
tq 50 prop-seg 17 phase-seg1 17 phase-seg2 5 sjw 1
mcp25xxfd: tseg1 2..256 tseg2 1..128 sjw 1..128 brp 1..256 brp-inc 1
mcp25xxfd: dtseg1 1..32 dtseg2 1..16 dsjw 1..16 dbrp 1..256 dbrp-inc 1
clock 20000000
re-started bus-errors arbit-lost error-warn error-pass bus-off
0 0 0 0 0 0 numtxqueues 1␣

↪→numrxqueues 1 gso_max_size 65536 gso_max_segs 65535
RX: bytes packets errors dropped overrun mcast
0 0 0 0 0 0
TX: bytes packets errors dropped carrier collsns
0 0 0 0 0 0

The output contains a standard set of parameters also shown for Ethernet interfaces, so not all of these
are necessarily relevant for CAN (for example the MAC address). The following output parameters contain
useful information:

can0 Interface Name
NOARP CAN cannot use ARP protocol
MTU Maximum Transfer Unit
RX packets Number of Received Packets
TX packets Number of Transmitted Packets
RX bytes Number of Received Bytes
TX bytes Number of Transmitted Bytes
errors… Bus Error Statistics

The CAN configuration is done in the systemd configuration file /lib/systemd/network/can0.network. For
a persistent change of (as an example, the default bitrates), change the configuration in the BSP under
./meta-ampliphy/recipes-core/systemd/systemd-conf/can0.network in the root filesystem and rebuild the
root filesystem.

[Match]
Name=can0

(continues on next page)

Accessing Peripherals 69

https://www.kernel.org/doc/html/latest/networking/can.html
https://www.kernel.org/doc/html/latest/networking/can.html

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

(continued from previous page)

[Can]
BitRate=500000

The bitrate can also be changed manually, for example, to make use of the flexible bitrate:

target:~$ ip link set can0 down
target:~$ ip link set can0 txqueuelen 10 up type can bitrate 500000 sample-point 0.75 dbitrate␣
↪→4000000 dsample-point 0.8 fd on

You can send messages with cansend or receive messages with candump:

target:~$ cansend can0 123#45.67
target:~$ candump can0

To generate random CAN traffic for testing purposes, use cangen:

target:~$ cangen

cansend --help and candump --help provide help messages for further information on options and usage.

Warning

The mcp2518fd SPI to CANfd supports only baudrates starting from 125kB/s. Slower rates can be
selected but may not work correctly.

Device Tree CAN configuration of imx8mp-phyboard-pollux.dtsi: https://git.phytec.de/linux-imx/tree/
arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n165

7.14 PCIe
The phyCORE-i.MX 8M Plus has one Mini-PCIe slot. In general, PCIe autodetects new devices on the
bus. After connecting the device and booting up the system, you can use the command lspci to see all PCIe
devices recognized.

• Type:

target:~$ lspci -v

• You will receive:

00:00.0 PCI bridge: Synopsys, Inc. Device abcd (rev 01) (prog-if 00 [Normal decode])
Flags: bus master, fast devsel, latency 0, IRQ 218
Memory at 18000000 (64-bit, non-prefetchable) [size=1M]
Bus: primary=00, secondary=01, subordinate=ff, sec-latency=0
I/O behind bridge: None
Memory behind bridge: 18100000-181fffff [size=1M]
Prefetchable memory behind bridge: None
[virtual] Expansion ROM at 18200000 [disabled] [size=64K]
Capabilities: [40] Power Management version 3
Capabilities: [50] MSI: Enable+ Count=1/1 Maskable+ 64bit+
Capabilities: [70] Express Root Port (Slot-), MSI 00
Capabilities: [100] Advanced Error Reporting

(continues on next page)

Accessing Peripherals 70

https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n165
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n165

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

(continued from previous page)

Capabilities: [148] L1 PM Substates
Kernel driver in use: dwc3-haps

01:00.0 Network controller: Intel Corporation WiFi Link 5100
Subsystem: Intel Corporation WiFi Link 5100 AGN
Flags: fast devsel
Memory at 18100000 (64-bit, non-prefetchable) [disabled] [size=8K]
Capabilities: [c8] Power Management version 3
Capabilities: [d0] MSI: Enable- Count=1/1 Maskable- 64bit+
Capabilities: [e0] Express Endpoint, MSI 00
Capabilities: [100] Advanced Error Reporting
Capabilities: [140] Device Serial Number 00-24-d6-ff-ff-84-0d-1e
Kernel modules: iwlwifi

In this example, the PCIe device is the Intel Corporation WiFi Link 5100.

For PCIe devices, you have to enable the correct driver in the kernel configuration. This WLAN card, for ex-
ample, is manufactured by Intel. The option for the driver, which must be enabled, is named CONFIG_IWLWIFI
and can be found under Intel Wireless WiFi Next Gen AGN - Wireless-N/Advanced-N/Ultimat in the kernel
configuration.

• In order to activate the driver, follow the instructions from our Yocto manual: Kernel and Bootloader
Configuration

– The linux-imx is represented by: virtual/kernel

For some devices like the WLAN card, additional binary firmware blobs are needed. These firmware blobs
have to be placed in /lib/firmware/ before the device can be used.

• Type:

host:~$ scp -r <firmware> root@192.168.3.11:/lib/firmware

• For example, if you try to bring up the network interface:

target:~$ ip link set up wlp1s0

• You will get the following output on the serial console:

[58.682104] iwlwifi 0000:01:00.0: L1 Disabled - LTR Disabled
[58.690822] iwlwifi 0000:01:00.0: L1 Disabled - LTR Disabled
[58.696577] iwlwifi 0000:01:00.0: Radio type=0x1-0x2-0x0
[58.831022] iwlwifi 0000:01:00.0: L1 Disabled - LTR Disabled
[58.839679] iwlwifi 0000:01:00.0: L1 Disabled - LTR Disabled
[58.845435] iwlwifi 0000:01:00.0: Radio type=0x1-0x2-0x0
[58.902797] IPv6: ADDRCONF(NETDEV_UP): wlp1s0: link is not ready

Tip

Some PCIe devices, e.g. the Ethernet card, may function properly even if no firmware blob is loaded
from /lib/firmware/ and you received an error message as shown in the first line of the output above.
This is because some manufacturers provide the firmware as a fallback on the card itself. In this case,
the behavior and output depend strongly on the manufacturer’s firmware.

Accessing Peripherals 71

https://phytec.github.io/doc-bsp-yocto/yocto/kirkstone.html#kernel-and-bootloader-configuration
https://phytec.github.io/doc-bsp-yocto/yocto/kirkstone.html#kernel-and-bootloader-configuration

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

Device Tree PCIe configuration of imx8mm-phyboard-polis.dtsi: https://git.phytec.de/linux-imx/tree/arch/
arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n277

7.15 Audio
Playback devices supported for phyBOARD-Pollux are HDMI and the TI TLV320AIC3007 audio codec on
the PEB-AV-10 connector. On the AV-Connector there is a 3.5mm headset jack with OMTP-standard and
an 8-pin header. The 8-pin header contains a mono speaker, headphones, and line in signals.

Note

Using the PEB-AV-10 connector for display output along HDMI as audio output is not supported. The
audio output device must match the video output device.

To check if your soundcard driver is loaded correctly and what the device is called, type for playback devices:

target:~$ aplay -L

Or type for recording devices:

target:~$ arecord -L

7.15.1 Alsamixer
To inspect the capabilities of your soundcard, call:

target:~$ alsamixer

You should see a lot of options as the audio-IC has many features you can experiment with. It might be
better to open alsamixer via ssh instead of the serial console, as the console graphical effects are better. You
have either mono or stereo gain controls for all mix points. “MM” means the feature is muted (both output,
left & right), which can be toggled by hitting m. You can also toggle by hitting ‘<’ for left and ‘>’ for right
output. With the tab key, you can switch between controls for playback and recording.

7.15.2 ALSA configuration
Our BSP comes with a ALSA configuration file /etc/asound.conf.

The ALSA configuration file can be edited as desired or deleted since it is not required for ALSA to work
properly.

target:~$ vi /etc/asound.conf

To set PEB-AV-10 as output, set playback.pcm from “dummy” to “pebav10”:

[...]

pcm.asymed {
type asym
playback.pcm "pebav10"
capture.pcm "dsnoop"

}
(continues on next page)

Accessing Peripherals 72

https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n277
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n277

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

(continued from previous page)

[...]

If the sound is not audible change playback devices to the software volume control playback devices, set
playback.pcm to the respective softvol playback device either “softvol_hdmi” or “softvol_pebav10”. Use
alsamixer controls to vary the volume levels.

[...]

pcm.asymed {
type asym
playback.pcm "softvol_hdmi"
capture.pcm "dsnoop"

}

[...]

7.15.3 Pulseaudio Configuration
For applications using Pulseaudio, check for available sinks:

target:~$ pactl list short sinks
0 alsa_output.platform-snd_dummy.0.stereo-fallback module-alsa-card.c s16le 2ch 44100Hz ␣
↪→SUSPENDED
1 alsa_output.platform-sound-peb-av-10.stereo-fallback module-alsa-card.c s16le 2ch␣
↪→44100Hz SUSPENDED

To select PEB-AV-10, type:

target:~$ pactl set-default-sink 1

7.15.4 Playback
Run speaker-test to check playback availability:

target:~$ speaker-test -c 2 -t wav

To playback simple audio streams, you can use aplay. For example to play the ALSA test sounds:

target:~$ aplay /usr/share/sounds/alsa/*

To playback other formats like mp3 for example, you can use Gstreamer:

target:~$ gst-launch-1.0 playbin uri=file:/path/to/file.mp3

7.15.5 Capture
arecord is a command-line tool for capturing audio streams which use Line In as the default input source.
To select a different audio source you can use alsamixer. For example, switch on Right PGA Mixer Mic3R
and Left PGA Mixer Mic3R in order to capture the audio from the microphone input of the TLV320-Codec
using the 3.5mm jack.

Accessing Peripherals 73

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

target:~$ amixer -c "sndpebav10" sset 'Left PGA Mixer Mic3R' on
target:~$ amixer -c "sndpebav10" sset 'Right PGA Mixer Mic3R' on

target:~$ arecord -t wav -c 2 -r 44100 -f S16_LE test.wav

Hint

Since playback and capture share hardware interfaces, it is not possible to use different sampling rates
and formats for simultaneous playback and capture operations.

Device Tree Audio configuration: https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/
overlays/imx8mp-phyboard-pollux-peb-av-010.dtso?h=v5.10.72_2.2.0-phy17#n57

7.16 Video

7.16.1 Videos with Gstreamer
The video is installed by default in the BSP:

target:~$ gst-launch-1.0 playbin uri=file:///usr/share/phytec-qtdemo/videos/caminandes.webm

• Or:

target:~$ gst-launch-1.0 -v filesrc location=<video.mp4> \
\! qtdemux \! h264parse \! queue \! vpudec \! waylandsink async=false enable-last-sample=false \
qos=false sync=false

• Or:

target:~$ gplay-1.0 /usr/share/phytec-qtdemo/videos/caminandes.webm

7.16.2 kmssink Plugin ID Evaluation
The kmssink plugin needs a connector ID. To get the connector ID, you can use the tool modetest.

target:~$ modetest -c imx-drm

The output will show something like:

Connectors:
id encoder status name size (mm) modes encoders
35 34 connected LVDS-1 216x135 1 34
modes:
index name refresh (Hz) hdisp hss hse htot vdisp vss vse vtot

#0 1280x800 59.07 1280 1380 1399 1440 800 804 808 823 70000 flags: phsync, pvsync; type:␣
↪→preferred, driver
props:
1 EDID:

flags: immutable blob
blobs:

(continues on next page)

Accessing Peripherals 74

https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/overlays/imx8mp-phyboard-pollux-peb-av-010.dtso?h=v5.10.72_2.2.0-phy17#n57
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/overlays/imx8mp-phyboard-pollux-peb-av-010.dtso?h=v5.10.72_2.2.0-phy17#n57

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

(continued from previous page)

value:
2 DPMS:

flags: enum
enums: On=0 Standby=1 Suspend=2 Off=3
value: 0

5 link-status:
flags: enum
enums: Good=0 Bad=1
value: 0

6 non-desktop:
flags: immutable range
values: 0 1
value: 0

4 TILE:
flags: immutable blob
blobs:

value:

7.17 Display
The phyBOARD-Pollux supports up to 4 different display outputs. Three can be used simultaneously. The
following table shows the required extensions and devicetree overlays for the different interfaces.

Inter-
face

Expansion devicetree overlay

HDMI phyBOARD-Pollux no overlay needed (enabled by default)
LVDS0 PEB-AV-10 imx8mp-phyboard-pollux-peb-av-010.dtbo (loaded by default)
LVDS1 phyBOARD-Pollux disabled if PEB-AV-10 overlay is used
MIPI PEB-AV-12 (MIPI to LVDS) imx8mp-phyboard-pollux-peb-av-012.dtbo

Note

• HDMI will not work if LVDS1 (onboard) is enabled.

• When changing Weston output, make sure to match the audio output as well.

• LVDS0 (PEB-AV-10) and LVDS1 (onboard)can not be used at the same time.

HDMI is always enabled in the devicetree. The other interfaces can be enabled with Device Tree Overlay.

The default-enabled Interfaces are HDMI and LVDS0 (PEB-AV-010). We support a 10’’ edt,etml1010g0dka
display for the PEB-AV-10 and PEB-AV-12.

Note

The current display driver limits the pixel clock for a display connected to LVDS to 74.25Mhz (or a
divider of it). If this does not fit your display requirements, please contact Support for further help.

Accessing Peripherals 75

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

7.17.1 Weston Configuration
In order to get an output from Weston on the correct display, it still needs to be configured correctly. This
will be done at /etc/xdg/weston/weston.ini.

Single Display

In our BSP, the default Weston output is set to HDMI.

[output]
name=HDMI-A-1
mode=current

7.17.2 Qt Demo
With the phytec-qt5demo-image, Weston starts during boot. The phytec-qt5demo can be stopped with:

target:~$ systemctl stop phytec-qtdemo

• To start the demo again, run:

target:~$ systemctl start phytec-qtdemo

• To disable autostart of the demo run:

target:~$ systemctl disable phytec-qtdemo

• To enable autostart of the demo, run:

target:~$ systemctl enable phytec-qtdemo

• Weston can be stopped with:

target:~$ systemctl stop weston

Note

The Qt demo must be closed before Weston can be closed.

7.17.3 Backlight Control
If a display is connected to the PHYTEC board, you can control its backlight with the Linux kernel sysfs
interface. All available backlight devices in the system can be found in the folder /sys/class/backlight.
Reading the appropriate files and writing to them allows you to control the backlight.

Note

Some boards with multiple display connectors might have multiple backlight controls in
/sys/class/backlight. For example: backlight0 and backlight1

• To get, for example, the maximum brightness level (max_brightness) execute:

target:~$ cat /sys/class/backlight/backlight/max_brightness

Accessing Peripherals 76

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

Valid brightness values are 0 to <max_brightness>.

• To obtain the current brightness level, type:

target:~$ cat /sys/class/backlight/backlight/brightness

• Write to the file brightness to change the brightness:

target:~$ echo 0 > /sys/class/backlight/backlight/brightness

turns the backlight off for example.

For documentation of all files, see https://www.kernel.org/doc/Documentation/ABI/stable/
sysfs-class-backlight.

Device tree description of LVDS-1 and HDMI can be found here: https://git.phytec.de/linux-imx/
tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n255
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?
h=v5.10.72_2.2.0-phy17#n180

The device tree of LVDS-0 on PEB-AV-10 can be found here: https://git.phytec.de/linux-imx/tree/arch/
arm64/boot/dts/freescale/overlays/imx8mp-phyboard-pollux-peb-av-010.dtso?h=v5.10.72_2.2.0-phy17#
n132

7.18 Power Management

7.18.1 CPU Core Frequency Scaling
The CPU in the i.MX 8M Plus SoC is able to scale the clock frequency and the voltage. This is used to
save power when the full performance of the CPU is not needed. Scaling the frequency and the voltage
is referred to as ‘Dynamic Voltage and Frequency Scaling’ (DVFS). The i.MX 8M Plus BSP supports the
DVFS feature. The Linux kernel provides a DVFS framework that allows each CPU core to have a min/max
frequency and a governor that governs it. Depending on the i.MX 8 variant used, several different frequencies
are supported.

Tip

Although the DVFS framework provides frequency settings for each CPU core, a change in the frequency
settings of one CPU core always affects all other CPU cores too. So all CPU cores always share the same
DVFS setting. An individual DVFS setting for each core is not possible.

• To get a complete list type:

target:~$ cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies

In case you have, for example, i.MX 8MPlus CPU with a maximum of approximately 1,6 GHz, the
result will be:

1200000 1600000

• To ask for the current frequency type:

target:~$ cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq

So-called governors are automatically selecting one of these frequencies in accordance with their goals.

Accessing Peripherals 77

https://www.kernel.org/doc/Documentation/ABI/stable/sysfs-class-backlight
https://www.kernel.org/doc/Documentation/ABI/stable/sysfs-class-backlight
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n255
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n255
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n180
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n180
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/overlays/imx8mp-phyboard-pollux-peb-av-010.dtso?h=v5.10.72_2.2.0-phy17#n132
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/overlays/imx8mp-phyboard-pollux-peb-av-010.dtso?h=v5.10.72_2.2.0-phy17#n132
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/overlays/imx8mp-phyboard-pollux-peb-av-010.dtso?h=v5.10.72_2.2.0-phy17#n132

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

• List all governors available with the following command:

target:~$ cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors

The result will be:

conservative ondemand userspace powersave performance schedutil

• conservative is much like the ondemand governor. It differs in behavior in that it gracefully increases
and decreases the CPU speed rather than jumping to max speed the moment there is any load on the
CPU.

• ondemand (default) switches between possible CPU core frequencies in reference to the current system
load. When the system load increases above a specific limit, it increases the CPU core frequency
immediately.

• powersave always selects the lowest possible CPU core frequency.

• performance always selects the highest possible CPU core frequency.

• userspace allows the user or userspace program running as root to set a specific frequency (e.g. to
1600000). Type:

• In order to ask for the current governor, type:

target:~$ cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

You will normally get:

ondemand

• Switching over to another governor (e.g. userspace) is done with:

target:~$ echo userspace > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

• Now you can set the speed:

target:~$ echo 1600000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

For more detailed information about the governors, refer to the Linux kernel documentation in the linux
kernel repository at Documentation/admin-guide/pm/cpufreq.rst.

7.18.2 CPU Core Management
The i.MX 8M Plus SoC can have multiple processor cores on the die. The i.MX 8M Plus, for example, has
4 ARM Cores which can be turned on and off individually at runtime.

• To see all available cores in the system, execute:

target:~$ ls /sys/devices/system/cpu -1

• This will show, for example:

cpu0 cpu1 cpu2 cpu3 cpufreq
[...]

Here the system has four processor cores. By default, all available cores in the system are enabled to
get maximum performance.

Accessing Peripherals 78

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

• To switch off a single-core, execute:

target:~$ echo 0 > /sys/devices/system/cpu/cpu3/online

As confirmation, you will see:

[110.505012] psci: CPU3 killed

Now the core is powered down and no more processes are scheduled on this core.

• You can use top to see a graphical overview of the cores and processes:

target:~$ htop

• To power up the core again, execute:

target:~$ echo 1 > /sys/devices/system/cpu/cpu3/online

7.18.3 Suspend to RAM
The phyCORE-i.MX8MP supports basic suspend and resume. Different wake-up sources can be used.
Suspend/resume is possible with:

target:~$ echo mem > /sys/power/state
#resume with pressing on/off button

To wake up with serial console run

target:~$ echo enabled > /sys/class/tty/ttymxc0/power/wakeup
target:~$ echo mem > /sys/power/state

7.19 Thermal Management

7.19.1 U-Boot
The previous temperature control in the U-Boot was not satisfactory. Now the u-boot has a temperature
shutdown to prevent the board from getting too hot during booting. The temperatures at which the shutdown
occurs are identical to those in the kernel.

The individual temperature ranges with the current temperature are displayed in the boot log:

CPU: Industrial temperature grade (-40C to 105C) at 33C

7.19.2 Kernel
The Linux kernel has integrated thermal management that is capable of monitoring SoC temperatures, reduc-
ing the CPU frequency, driving fans, advising other drivers to reduce the power consumption of devices, and
– worst-case – shutting down the system gracefully (https://www.kernel.org/doc/Documentation/thermal/
sysfs-api.txt).

This section describes how the thermal management kernel API is used for the i.MX 8M Plus SoC platform.
The i.MX 8 has internal temperature sensors for the SoC.

• The current temperature can be read in millicelsius with:

Accessing Peripherals 79

https://www.kernel.org/doc/Documentation/thermal/sysfs-api.txt
https://www.kernel.org/doc/Documentation/thermal/sysfs-api.txt

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

target:~$ cat /sys/class/thermal/thermal_zone0/temp

• You will get, for example:

49000

There are two trip points registered by the imx_thermal kernel driver. These differ depending on the CPU
variant. A distinction is made between Industrial and Commercial.

Commercial Industrial
passive (warning) 85°C 95°C
critical (shutdown) 90°C 100°C

(see kernel sysfs folder /sys/class/thermal/thermal_zone0/)

The kernel thermal management uses these trip points to trigger events and change the cooling behavior.
The following thermal policies (also named thermal governors) are available in the kernel: Step Wise, Fair
Share, Bang Bang, and Userspace. The default policy used in the BSP is step_wise. If the value of the
SoC temperature in the sysfs file temp is above trip_point_0, the CPU frequency is set to the lowest CPU
frequency. When the SoC temperature drops below trip_point_0 again, the throttling is released.

Note

The actual values of the thermal trip points may differ since we mount CPUs with different temperature
grades.

7.19.3 GPIO Fan

Note

Starting with BSP-Yocto-i.MX8MP-PD22.1.1 we have to switch from PWM fan to GPIO fan due to
availability. The PWM fan will not be supported anymore and will not function with the new release.

A GPIO fan can be connected to the phyBOARD-Pollux-i.MX 8M Plus. The SoC only contains one tem-
perature sensor which is already used by the thermal frequency scaling. The fan can not be controlled by
the kernel. We use lmsensors with hwmon for this instead. lmsensors reads the temperature periodically
and enables or disables the fan at a configurable threshold. For the phyBOARD-Pollux-i.MX 8M Plus, this
is 60°C.

The settings can be configured in the configuration file:

/etc/fancontrol

Fan control is started by a systemd service during boot. This can be disabled with:

target:~$ systemctl disable fancontrol

The device tree description of GPIO Fan can be found here: https://git.phytec.de/linux-imx/tree/arch/
arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n26

Accessing Peripherals 80

https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n26
https://git.phytec.de/linux-imx/tree/arch/arm64/boot/dts/freescale/imx8mp-phyboard-pollux.dtsi?h=v5.10.72_2.2.0-phy17#n26

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

7.20 Watchdog
The PHYTEC i.MX 8M Plus modules include a hardware watchdog that is able to reset the board when
the system hangs. The watchdog is started on default in U-Boot with a timeout of 60s. So even during
early kernel start, the watchdog is already up and running. The Linux kernel driver takes control over the
watchdog and makes sure that it is fed. This section explains how to configure the watchdog in Linux using
systemd to check for system hangs and during reboot.

7.20.1 Watchdog Support in systemd
Systemd has included hardware watchdog support since version 183.

• To activate watchdog support, the file system.conf in /etc/systemd/ has to be adapted by enabling the
options:

RuntimeWatchdogSec=60s
ShutdownWatchdogSec=10min

RuntimeWatchdogSec defines the timeout value of the watchdog, while ShutdownWatchdogSec defines the
timeout when the system is rebooted. For more detailed information about hardware watchdogs under
systemd can be found at http://0pointer.de/blog/projects/watchdog.html. The changes will take effect
after a reboot or run:

target:~$ systemctl daemon-reload

7.21 snvs Power Key
The X_ONOFF pin connected to the ON/OFF button can be pressed long to trigger Power OFF without SW
intervention or used to wake up the system out of suspend. With the snvs_pwrkey driver, the KEY_POWER
event is also reported to userspace when the button is pressed. On default, systemd is configured to ignore
such events. The function of Power OFF without SW intervention and the wake-up from suspend are not
configured. Triggering a power off with systemd when pushing the ON/OFF button can be configured under
/etc/systemd/logind.conf and set using:

HandlePowerKey=poweroff

7.22 NPU
The i.MX 8M Plus SoC contains a Neural Processing Unit up to 2.3 TOPS as an accelerator for artificial
intelligence operations. Refer to our latest phyCORE-i.MX 8M Plus AI Kit Guide on the phyCORE-i.MX
8M Plus download section to get information about the NPU: L-1015e.A0 phyCORE-i.MX 8M Plus AI Kit
Guide

7.22.1 NXP Examples for eIQ
NXP provides a set of machine learning examples for eIQ using Python3. To add a pre-configured machine
learning package group, add to your local.conf and build your BSP:

IMAGE_INSTALL_append = " packagegroup-imx-ml python3-pip python3-requests opencv"

This will require about 1GB of additional space on the SD Card. Instructions on how to install and use
the NXP examples can be found at https://community.nxp.com/t5/Blogs/PyeIQ-3-x-Release-User-Guide/
ba-p/1305998.

Accessing Peripherals 81

http://0pointer.de/blog/projects/watchdog.html
https://www.phytec.de/cdocuments/?doc=ZQBhDw
https://www.phytec.de/cdocuments/?doc=ZQBhDw
https://community.nxp.com/t5/Blogs/PyeIQ-3-x-Release-User-Guide/ba-p/1305998
https://community.nxp.com/t5/Blogs/PyeIQ-3-x-Release-User-Guide/ba-p/1305998

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

Hint

The installation of the eiq examples with pip3 requires an internet connection.

Note

On some Ubuntu 20.04 hosts, cmake uses the host’s Python 3 instead of Python 3.7 from
Yocto when building python3-pybind11. (see https://community.nxp.com/t5/i-MX-Processors/
Yocto-L5-4-70-2-3-0-build-image-failed/m-p/1219619)

As a workaround edit, the python3-pybind11 recipe by:

$ devtool edit-recipe python3-pybind11

and add to the file:
EXTRA_OECMAKE += "-DPYTHON_EXECUTABLE=${RECIPE_SYSROOT_NATIVE}/usr/bin/python3-native/python3.
↪→7"

7.23 ISP
The i.MX 8M Plus SoC contains an Image Signal Processor (ISP). For more information see Using the ISPs
on the phyBOARD-Pollux i.MX 8M Plus documentation. This documentation is also available in German.

7.24 On-Chip OTP Controller (OCOTP_CTRL) - eFuses
The i.MX 8M Plus provides one-time programmable fuses to store information such as the MAC address,
boot configuration, and other permanent settings (“On-Chip OTP Controller (OCOTP_CTRL)” in the i.MX
8M Plus Reference Manual). The following list is an abstract from the i.MX 8M Plus Reference Manual and
includes some useful registers in the OCOTP_CTRL (at base address 0x30350000):

Name Bank Word Memory offset at
0x30350000

Description

OCOTP_MAC_ADDR09 0 0x640 contains lower 32 bits of ENET0 MAC address
OCOTP_MAC_ADDR19 1 0x650 contains upper 16 bits of ENET0 MAC address and the

lower 16 bits of ENET1 MAC address
OCOTP_MAC_ADDR29 2 0x660 contains upper 32 bits of ENET1 MAC address

A complete list and a detailed mapping between the fuses in the OCOTP_CTRL and the boot/mac/…
configuration are available in the section “Fuse Map” of the i.MX 8M Plus Security Reference Manual.

7.24.1 Reading Fuse Values in uBoot
You can read the content of a fuse using memory-mapped shadow registers. To calculate the memory address,
use the fuse Bank and Word in the following formula:

OCOTP_MAC_ADDR:

u-boot=> fuse read 9 0

Accessing Peripherals 82

https://community.nxp.com/t5/i-MX-Processors/Yocto-L5-4-70-2-3-0-build-image-failed/m-p/1219619
https://community.nxp.com/t5/i-MX-Processors/Yocto-L5-4-70-2-3-0-build-image-failed/m-p/1219619

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

7.24.2 Reading Fuse Values in Linux
To access the content of the fuses in Linux NXP provides the NVMEM_IMX_OCOTP module. All fuse
content of the memory-mapped shadow registers is accessible via sysfs:

target:~$ hexdump /sys/devices/platform/soc@0/30000000.bus/30350000.efuse/imx-ocotp0/nvmem

Reading the registers using /dev/mem will cause the system to hang unless the ocotp_root_clk is enabled. To
enable this clock permanent, add to the device tree:

&clk {
init-on-array = <IMX8MP_CLK_OCOTP_ROOT>;

};

Accessing Peripherals 83

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

Accessing Peripherals 84

CHAPTER

EIGHT

I.MX 8M PLUS M7 CORE

In addition to the Cortex-A53 cores, there is a Cortex-M7 Core as MCU integrated into the i.MX 8M
Plus SoC. Our Yocto-Linux-BSP runs on the A53-Cores and the M7 Core can be used as a secondary core
for additional tasks using bare-metal or RTOS firmware. Both cores have access to the same peripherals
and thus peripheral usage needs to be limited either in the M7 Core’s firmware or the devicetree for the
Linux operating system. This section describes how to build firmware examples and how to run them on
phyBOARD-Pollux.

The phyBOARD-Pollux is currently supported by the NXP MCUXpresso SDK and by The Zephyr Project.
This section only describes the NXP MCUXpresso SDK because the MCUXpresso SDK has more supported
features at the moment.

If you want to use the M7 Core with The Zephyr Project, please refer to the The Zephyr Project documen-
tation:

• https://docs.zephyrproject.org/latest/boards/phytec/mimx8mp_phyboard_pollux/doc/index.html

8.1 Getting the Firmware Examples
The firmware can be built using the NXP MCUxpresso SDK with a compatible compiler toolchain using
command-line tools.

8.1.1 Getting the Sources
The MCUX SDK and the examples for the i.MX 8M Plus can be obtained from PHYTEC’s GitHub page:

• https://github.com/phytec/mcux-sdk/

• https://github.com/phytec/mcux-sdk-phytec-examples/

1. Initialize the MCUX SDK via west:

host:~$ west init -m https://github.com/phytec/mcux-sdk/ --mr <VERSION> mcuxsdk

This will create a mcuxsdk directory with the mcux-sdk repository in it. The mcux-sdk-phytec-examples
repository will be automatically cloned into the mcuxsdk directory. The given argument <VERSION>
is a the branch name of the mcux-sdk repository that represents the MCUX SDK version. For the
newest tested version you can use 2.13.0.

Note

west is a repository management tool and a part of the Zephyr Project. To install west, you can
use pip. In this example west is installed in a python virtual environment:

85

https://docs.zephyrproject.org/latest/boards/phytec/mimx8mp_phyboard_pollux/doc/index.html
https://github.com/phytec/mcux-sdk/
https://github.com/phytec/mcux-sdk-phytec-examples/

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

host:~$ sudo apt install python3-venv python3-pip
host:~$ python3 -m venv west-env
host:~$ source west-env/bin/activate
(west-env) host:~$ pip3 install west

2. Update the dependencies:

host:~$ cd mcuxsdk
host:~/mcuxsdk$ west update

The directory examples-phytec contains all examples ported and tested for phyBOARD-Pollux with
version 2.13.0 of MCUX.

To build the firmware, a compiler toolchain and make/cmake are required. The GNU Arm Embedded
Toolchain may be available in your distribution’s repositories, e.g. for Ubuntu.

host:~$ sudo apt install gcc-arm-none-eabi binutils-arm-none-eabi make cmake

The compiler toolchain can also be obtained directly from https://developer.arm.com/. After the
archive has been extracted, the ARMGCC_DIR has to be added to the environment, e.g. for the ARM
toolchain 10-2020-q4-major release located in the home directory:

host:~$ export ARMGCC_DIR=~/gcc-arm-none-eabi-10-2020-q4-major

8.1.2 Building the Firmware
To build the PHYTEC samples an environment has to be sourced

host:~/mcuxsdk$ source scripts/setenv

The scripts to build the firmware are located in <sdk-directory>/phytec-mcux-boards/phyboard-
pollux/<example_category>/<example>/armgcc. There are scripts for each memory location the firmware
is supposed to run in, e.g.

host:~$./build_release.sh

to build the firmware for the M7 Core’s TCM. The output will be placed under release/ in the armgcc
directory. .bin files and can be run in U-Boot and .elf files within Linux.

To build the firmware for the DRAM, run the script build_ddr_release. The script of the firmware that is
supposed to run, e.g.

host:~$./build_ddr_release.sh

The output will be placed under ddr_release/ in the armgcc directory. .bin files and can be run in U-Boot
and .elf files within Linux.

8.2 Running M7 Core Examples
There are two ways to run the M7 Core with the built firmware, U-Boot and Remoteproc within a running
Linux.

To receive debug messages start your favorite terminal software (e.g. Minicom, Tio, or Tera Term) on your
host PC and configure it for 115200 baud, 8 data bits, no parity, and 1 stop bit (8n1) with no handshake.

i.MX 8M Plus M7 Core 86

https://developer.arm.com/

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

Once a micro-USB cable is connected to the USB-debug port on the phyBOARD-Pollux, two ttyUSB devices
are registered. One prints messages from A53-Core’s debug UART and the other one from the M7 Core’s
debug UART.

8.2.1 Running Examples from U-Boot
To load firmware using the bootloader U-Boot, the bootaux command can be used:

1. Prepare an SD Card with our Yocto-BSP

2. Copy the generated .bin file to the SD Cards first partition

3. Stop the autoboot by pressing any key

4. Type the command depending on the type of firmware:

For firmware built to run in the M7 Core’s TCM:

u-boot=> fatload mmc 1:1 0x48000000 firmware.bin;cp.b 0x48000000 0x7e0000 20000;
u-boot=> bootaux 0x7e0000
Starting auxiliary core stack = 0x20020000, pc = 0x000004CD...

For firmware built to run in the DRAM:

u-boot=> fatload mmc 1:1 0x80000000 firmware.bin
u-boot=> dcache flush
u-boot=> bootaux 0x80000000
Starting auxiliary core stack = 0x80400000, pc = 0x80000539...

The program’s output should appear on the M7 Core’s debug UART.

8.2.2 Running Examples from Linux using Remoteproc
Remoteproc is a module that allows you to control the M7 Core from Linux during runtime. Firmware built
for TCM can be loaded and the execution started or stopped. To use Remoteproc a devicetree overlay needs
to be set:

Edit the bootenv.txt file located in the /boot directory on the target by adding imx8mp-phycore-rpmsg.dtbo:

overlays=imx8mp-phycore-rpmsg.dtbo

Restart the target and execute in U-Boot:

u-boot=> run prepare_mcore

Firmware .elf files for the M7 Core can be found under /lib/firmware. To load the firmware, type:

target:~$ echo /lib/firmware/<firmware>.elf > /sys/class/remoteproc/remoteproc0/firmware
target:~$ echo start > /sys/class/remoteproc/remoteproc0/state

To load a different firmware, the M7 Core needs to be stopped:

target:~$ echo stop > /sys/class/remoteproc/remoteproc0/state

i.MX 8M Plus M7 Core 87

i.MX 8M Plus BSP Manual PD22.1.1 Documentation Rev.: imx8mp-pd24.1.0-nxp-10-ge765156

Note

The samples found in /lib/firmware on the target come from NXP’s Yocto layer meta-imx. To use the
samples you built yourself through MCUX SDK, please copy them to /lib/firmware on the target after
building them.

8.2.3 Debugging Using J-Link
The Segger software can be obtained from https://www.segger.com/downloads/jlink/. As of version V7.20a
of the Segger software, accessing the i.MX 8M Plus’ M7 Core requires additional configuration files to be
copied into the J-Link software directory: NXP J-Link files for i.MX 8M Plus

Together with the J-Link, GDB Server can be used for running and debugging the software. On the
phyBOARD-Pollux, the JTAG-Pins are accessible via the X6 Expansion Connector. The simplest way
is to use a PEB-EVAL-01 board that has the JTAG-Pins reachable with a pin header on the top.

host:~$ sudo apt install gdb gdb-multiarch

To start the J-Link software, type:

host:~$ JLinkGDBServer -if JTAG -device MIMX8ML8_M7
...
Connected to target
Waiting for GDB connection...

To start GDB with a firmware example in another window, type:

host:~$ gdb-multiarch firmware.elf
...
(gdb) target remote localhost:2331
(gdb) monitor reset
Resetting target
(gdb) load
...
(gdb) monitor go

i.MX 8M Plus M7 Core 88

https://www.segger.com/downloads/jlink/

CHAPTER

NINE

BSP EXTENSIONS

9.1 Chromium
Our BSP for the phyBOARD-Pollux-i.MX 8M Plus supports Chromium. You can include it in the phytec-
qt5demo-image with only a few steps.

9.1.1 Adding Chromium to Your local.conf
To include Chromium you have to add the following line into your local.conf. You can find it in
<yocto_dir>/build/conf/local.conf. This adds Chromium to your next image build.

IMAGE_INSTALL_append = " chromium-ozone-wayland"

Note

Compiling Chromium takes a long time.

9.1.2 Get Chromium Running on the Target
To run Chromium, it needs a few arguments to use the hardware graphics acceleration:

target$ chromium --use-gl=desktop --enable-features=VaapiVideoDecoder --no-sandbox

If you want to start Chromium via SSH, you must first define the display on which Chromium will run. For
example:

target$ DISPLAY=:0

After you have defined this, you can start it via virtual terminal on Weston as shown above.

89

	Supported Hardware
	phyBOARD-Pollux Components

	Getting Started
	Get the Image
	Write the Image to SD Card
	First Start-up

	Building the BSP
	Basic Set-Up
	Get the BSP
	Starting the Build Process
	BSP Images

	Installing the OS
	Bootmode Switch (S3)
	Flash eMMC
	Flash eMMC from Network
	Flash eMMC from Network in u-boot on Target
	Flash eMMC via Network in Linux on Target
	Flash eMMC via Network in Linux on Host

	Flash eMMC u-boot image via Network from running u-boot
	Flash eMMC from USB
	Flash eMMC from USB in u-boot on Target
	Flash eMMC from USB in Linux

	Flash eMMC from SD Card
	Flash eMMC from SD card in u-boot on Target
	Flash eMMC from SD card in Linux on Target

	Flash SPI NOR Flash
	Flash SPI NOR Flash from Network
	Flash SPI NOR from Network in u-boot on Target
	Flash SPI NOR from Network in kernel on Target

	Flash SPI NOR Flash from SD Card
	Flash SPI NOR from SD Card in u-boot on Target
	Flash SPI NOR from SD Card in kernel on Target

	RAUC

	Development
	Host Network Preparation
	TFTP Server Setup
	NFS Server Setup
	DHCP Server setup

	Booting the Kernel from a Network
	Place Images on Host for Netboot
	Set the bootenv.txt for Netboot
	Network Settings on Target
	Booting from an Embedded Board

	Working with UUU-Tool
	Host preparations for UUU-Tool Usage
	Get Images
	Prepare Target
	Starting bootloader via UUU-Tool
	Flashing U-boot Image to eMMC via UUU-Tool
	Flashing wic Image to eMMC via UUU-Tool

	Standalone Build preparation
	Git Repositories
	Get the SDK
	Install the SDK
	Using the SDK
	Installing Required Tools

	U-Boot standalone build
	Get the source code
	Get the needed binaries
	Build the bootloader
	Flash the bootloader to a block device
	Build U-Boot With a Fixed RAM Size

	Kernel standalone build
	Setup sources
	Build the kernel
	Copy Kernel to SD Card

	Accessing the Development states
	Development state of current release
	Development state of upcoming release

	Accessing the Latest Upstream Support
	Format SD-Card
	Gparted
	Expand rootfs
	Create the Third Partition

	Device Tree (DT)
	Introduction
	PHYTEC i.MX 8M Plus BSP Device Tree Concept
	Device Tree Structure
	Device Tree Overlay
	Set ${overlays} variable
	Extension Command

	U-boot External Environment
	Change U-boot Environment from Linux on Target

	Accessing Peripherals
	i.MX 8M Plus Pin Muxing
	RS232/RS485
	RS232
	RS485

	Network
	Network Environment Customization
	U-boot network-environment
	Kernel network-environment

	WLAN
	Connecting to a WLAN Network

	Bluetooth
	Visibility
	Connect
	Visibility
	Connect

	SD/MMC Card
	eMMC Devices
	Extended CSD Register
	Enabling Background Operations (BKOPS)
	Reliable Write
	Resizing ext4 Root Filesystem
	Enable pseudo-SLC Mode
	Erasing the Device
	eMMC Boot Partitions
	Via userspace Commands
	Resizing ext4 Root Filesystem

	SPI Master
	SPI NOR Flash

	GPIOs
	GPIOs via sysfs

	LEDs
	I²C Bus
	EEPROM
	I2C EEPROM on phyCORE-i.MX8MP
	EEPROM SoM Detection
	Rescue EEPROM Data

	RTC
	RTC Wakealarm

	USB Host Controller
	CAN FD
	PCIe
	Audio
	Alsamixer
	ALSA configuration
	Pulseaudio Configuration
	Playback
	Capture

	Video
	Videos with Gstreamer
	kmssink Plugin ID Evaluation

	Display
	Weston Configuration
	Single Display

	Qt Demo
	Backlight Control

	Power Management
	CPU Core Frequency Scaling
	CPU Core Management
	Suspend to RAM

	Thermal Management
	U-Boot
	Kernel
	GPIO Fan

	Watchdog
	Watchdog Support in systemd

	snvs Power Key
	NPU
	NXP Examples for eIQ

	ISP
	On-Chip OTP Controller (OCOTP_CTRL) - eFuses
	Reading Fuse Values in uBoot
	Reading Fuse Values in Linux

	i.MX 8M Plus M7 Core
	Getting the Firmware Examples
	Getting the Sources
	Building the Firmware

	Running M7 Core Examples
	Running Examples from U-Boot
	Running Examples from Linux using Remoteproc
	Debugging Using J-Link

	BSP Extensions
	Chromium
	Adding Chromium to Your local.conf
	Get Chromium Running on the Target

