
Yocto Reference Manual Mickledore

PHYTEC Messtechnik GmbH

Nov 18, 2024

CONTENTS

1 PHYTEC Documentation 3

2 Yocto Introduction 5

3 Core Components 7

4 Vocabulary 9
4.1 Recipes . 9
4.2 Classes . 9
4.3 Layers . 9
4.4 Machine . 9
4.5 Distribution (Distro) . 10

5 Poky 11
5.1 Bitbake . 11
5.2 Toaster . 11

6 Official Documentation 13

7 Compatible Linux Distributions 15

8 PHYTEC BSP Introduction 17
8.1 BSP Structure . 17
8.2 Build Configuration . 20

9 Pre-built Images 21

10 BSP Workspace Installation 23
10.1 Setting Up the Host . 23
10.2 Git Configuration . 23
10.3 site.conf Setup . 24

11 phyLinux Documentation 25
11.1 Get phyLinux . 25
11.2 Basic Usage . 25
11.3 Initialization . 26
11.4 Advanced Usage . 28

12 Using build-container 31
12.1 Installation . 31
12.2 Available container . 31
12.3 Download/Pull container . 31

i

12.4 Run container . 32

13 Working with Poky and Bitbake 35
13.1 Start the Build . 35
13.2 Images images . 35
13.3 Accessing the Development States between Releases . 36
13.4 Inspect your Build Configuration . 36
13.5 BSP Features of meta-phytec and meta-ampliphy . 37
13.6 BSP Customization . 38
13.7 Common Tasks . 58

14 Troubleshooting 65
14.1 Setscene Task Warning . 65

15 Yocto Documentation 67

ii

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

Yocto Reference Manual
Document Title Yocto Reference Manual Mickledore
Document Type Yocto Manual
Release Date XXXX/XX/XX
Is Branch of Yocto Reference Manual

Compatible BSPs BSP Release Type BSP Release Date BSP Status
BSP-Yocto-NXP-i.MX93-PD24.1.0 Major 05.02.2024 released
BSP-Yocto-NXP-i.MX93-PD24.1.1 Minor 08.05.2024 released

This manual applies to all Mickledore based PHYTEC releases.

CONTENTS 1

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

CONTENTS 2

CHAPTER

ONE

PHYTEC DOCUMENTATION

PHYTEC will provide a variety of hardware and software documentation for all of our products. This
includes any or all of the following:

• QS Guide: A short guide on how to set up and boot a phyCORE board along with brief information
on building a BSP, the device tree, and accessing peripherals.

• Hardware Manual: A detailed description of the System on Module and accompanying carrier board.

• Yocto Guide: A comprehensive guide for the Yocto version the phyCORE uses. This guide contains
an overview of Yocto; introducing, installing, and customizing the PHYTEC BSP; how to work with
programs like Poky and Bitbake; and much more.

• BSP Manual: A manual specific to the BSP version of the phyCORE. Information such as how to
build the BSP, booting, updating software, device tree, and accessing peripherals can be found here.

• Development Environment Guide: This guide shows how to work with the Virtual Machine (VM)
Host PHYTEC has developed and prepared to run various Development Environments. There are
detailed step-by-step instructions for Eclipse and Qt Creator, which are included in the VM. There are
instructions for running demo projects for these programs on a phyCORE product as well. Information
on how to build a Linux host PC yourself is also a part of this guide.

• Pin Muxing Table: phyCORE SOMs have an accompanying pin table (in Excel format). This table
will show the complete default signal path, from processor to carrier board. The default device tree
muxing option will also be included. This gives a developer all the information needed in one location
to make muxing changes and design options when developing a specialized carrier board or adapting
a PHYTEC phyCORE SOM to an application.

On top of these standard manuals and guides, PHYTEC will also provide Product Change Notifications, Ap-
plication Notes, and Technical Notes. These will be done on a case-by-case basis. Most of the documentation
can be found in the applicable download page of our products.

3

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

PHYTEC Documentation 4

CHAPTER

TWO

YOCTO INTRODUCTION

Yocto is the smallest SI metric system prefix. Like milli equates to m = 10^-3, and so is yocto y = 10^-24.
Yocto is also a project working group of the Linux Foundation and therefore backed up by several major
companies in the field. On the Yocto Project website you can read the official introduction:

The Yocto Project is an open-source collaboration project that provides templates, tools, and
methods to help you create custom Linux-based systems for embedded products regardless of
the hardware architecture. It was founded in 2010 as a collaboration among many hardware
manufacturers, open-source operating systems vendors, and electronics companies to bring some
order to the chaos of embedded Linux development.

As said, the project wants to provide toolsets for embedded developers. It builds on top of the long-lasting
OpenEmbedded project. It is not a Linux distribution. But it contains the tools to create a Linux distribution
specially fitted to the product requirements. The most important step in bringing order to the set of tools
is to define a common versioning scheme and a reference system. All subprojects have then to comply with
the reference system and have to comply with the versioning scheme.

The release process is similar to the Linux kernel. Yocto increases its version number every six months and
gives the release a codename. The release list can be found here: https://wiki.yoctoproject.org/wiki/Releases

5

https://www.linuxfoundation.org/
https://www.yoctoproject.org/
https://www.openembedded.org/wiki/Main_Page
https://kernel.org/
https://wiki.yoctoproject.org/wiki/Releases

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

Yocto Introduction 6

CHAPTER

THREE

CORE COMPONENTS

The most important tools or subprojects of the Yocto Project are:

• Bitbake: build engine, a task scheduler like make, interprets metadata

• OpenEmbedded-Core, a set of base layers, containing metadata of software, no sources

• Yocto kernel

– Optimized for embedded devices

– Includes many subprojects: rt-kernel, vendor patches

– The infrastructure provided by Wind River

– Alternative: classic kernel build → we use it to integrate our kernel into Yocto

• Yocto Reference BSP: beagleboneblack, minnow max

• Poky, the reference system, a collection of projects and tools, used to bootstrap a new distribution
based on Yocto

7

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

Core Components 8

CHAPTER

FOUR

VOCABULARY

4.1 Recipes
Recipes contain information about the software project (author, homepage, and license). A recipe is ver-
sioned, defines dependencies, contains the URL of the source code, and describes how to fetch, configure,
and compile the sources. It describes how to package the software, e.g. into different .deb packages, which
then contain the installation path. Recipes are basically written in Bitbake’s own programming language,
which has a simple syntax. However, a recipe can contain Python as well as a bash code.

4.2 Classes
Classes combine functionality used inside recipes into reusable blocks.

4.3 Layers
A layer is a collection of recipes, classes, and configuration metadata. A layer can depend on other layers
and can be included or excluded one by one. It encapsulates a specific functionality and fulfills a specific
purpose. Each layer falls into a specific category:

• Base

• Machine (BSP)

• Software

• Distribution

• Miscellaneous

Yocto’s versioning scheme is reflected in every layer as version branches. For each Yocto version, every layer
has a named branch in its Git repository. You can add one or many layers of each category in your build.

A collection of OpenEmbedded layers can be found here. The search function is very helpful to see if
a software package can be retrieved and integrated easily: https://layers.openembedded.org/layerindex/
branch/mickledore/layers/

4.4 Machine
Machines are configuration variables that describe the aspects of the target hardware.

9

https://layers.openembedded.org/layerindex/branch/mickledore/layers/
https://layers.openembedded.org/layerindex/branch/mickledore/layers/

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

4.5 Distribution (Distro)
Distribution describes the software configuration and comes with a set of software features.

Vocabulary 10

CHAPTER

FIVE

POKY

Poky is the reference system to define Yocto Project compatibility. It combines several subprojects into
releases:

• Bitbake

• Toaster

• OpenEmbedded Core

• Yocto Documentation

• Yocto Reference BSP

5.1 Bitbake
Bitbake is the task scheduler. It is written in Python and interprets recipes that contain code in Bitbake’s
own programming language, Python, and bash code. The official documentation can be found here: https:
//docs.yoctoproject.org/bitbake/2.4/index.html

5.2 Toaster
Toaster is a web frontend for Bitbake to start and investigate builds. It provides information about the
build history and statistics on created images. There are several use cases where the installation and
maintenance of a Toaster instance are beneficial. PHYTEC did not add or remove any features to the
upstream Toaster, provided by Poky. The best source for more information is the official documentation:
https://docs.yoctoproject.org/4.2.4/toaster-manual/index.html

11

https://docs.yoctoproject.org/bitbake/2.4/index.html
https://docs.yoctoproject.org/bitbake/2.4/index.html
https://docs.yoctoproject.org/4.2.4/toaster-manual/index.html

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

Poky 12

CHAPTER

SIX

OFFICIAL DOCUMENTATION

For more general questions about Bitbake and Poky consult the mega-manual: https://docs.yoctoproject.
org/4.2.4/singleindex.html

13

https://docs.yoctoproject.org/4.2.4/singleindex.html
https://docs.yoctoproject.org/4.2.4/singleindex.html

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

Official Documentation 14

CHAPTER

SEVEN

COMPATIBLE LINUX DISTRIBUTIONS

To build Yocto you need a compatible Linux host development machine. The list of supported distributions
can be found in the reference manual: https://docs.yoctoproject.org/4.2.4/ref-manual/system-requirements.
html#supported-linux-distributions

15

https://docs.yoctoproject.org/4.2.4/ref-manual/system-requirements.html#supported-linux-distributions
https://docs.yoctoproject.org/4.2.4/ref-manual/system-requirements.html#supported-linux-distributions

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

Compatible Linux Distributions 16

CHAPTER

EIGHT

PHYTEC BSP INTRODUCTION

8.1 BSP Structure
The BSP consists roughly of three parts. BSP management, BSP metadata, and BSP content. The man-
agement consists of Repo and phyLinux while the metadata depends on the SOC, which describes how to
build the software. The content comprises PHYTEC’s Git repositories and external sources.

8.1.1 BSP Management
Yocto is an umbrella project. Naturally, this will force the user to base their work on several external
repositories. They need to be managed in a deterministic way. We use manifest files, which contain an XML
data structure, to describe all git repositories with pinned-down versions. The Repo tool and our phyLinux
wrapper script are used to manage the manifests and set up the BSP, as described in the manifest file.

phyLinux

phyLinux is a wrapper for Repo to handle downloading and setting up the BSP with an “out of the box”
experience.

Repo

Repo is a wrapper around the Repo toolset. The phyLinux script will install the wrapper in a global path.
This is only a wrapper, though. Whenever you run repo init -u <url>, you first download the Repo tools
from Googles Git server in a specific version to the .repo/repo directory. The next time you run Repo, all
the commands will be available. Be aware that the Repo version in different build directories can differ over
the years if you do not run Repo sync. Also if you store information for your archives, you need to include
the complete .repo folder.

Repo expects a Git repository which will be parsed from the command line. In the PHYTEC BSP, it is
called phy²octo. In this repository, all information about a software BSP release is stored in the form of a
Repo XML manifest. This data structure defines URLs of Git servers (called “remotes”) and Git repositories
and their states (called “projects”). The Git repositories can be seen in different states. The revision field
can be a branch, tag, or commit id of a repository. This means the state of the software is not necessarily
unique and can change over time. That is the reason we use only tags or commit ids for our releases. The
state of the working directory is then unique and does not change.

The manifests for the releases have the same name as the release itself. It is a unique identifier for the
complete BSP. The releases are sorted by the SoC platform. The selected SoC will define the branch of the
phy²octo Git repository which will be used for the manifest selection.

17

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

8.1.2 BSP Metadata
We include several third-party layers in our BSP to get a complete Linux distribution up and running without
the need to integrate external projects. All used repositories are described in the following section.

Poky

The PHYTEC BSP is built on top of Poky. It comes with a specific version, defined in the Repo manifest.
Poky comes with a specific version of Bitbake. The OpenEmbedded-core layer “meta” is used as a base for
our Linux system.

meta-openembedded

OpenEmbedded is a collection of different layers containing the meta description for many open-source
software projects. We ship all OpenEmbedded layers with our BSP, but not all of them are activated. Our
example images pull several software packages generated from OpenEmbedded recipes.

meta-qt6

This layer provides an integration of Qt6 in the Poky-based root filesystem and is integrated into our BSP.

meta-nodejs

This is an application layer to add recent Node.js versions.

meta-gstreamer1.0

This is an application layer to add recent GStreamer versions.

meta-rauc

This layer contains the tools required to build an updated infrastructure with RAUC. A comparison with
other update systems can be found here: Yocto update tools.

meta-phytec

This layer contains all machines and common features for all our BSPs. It is PHYTEC’s Yocto Board
Support Package for all supported hardware (since fido) and is designed to be standalone with Poky. Only
these two parts are required if you want to integrate the PHYTEC’s hardware into your existing Yocto
workflow. The features are:

• Bootloaders in recipes-bsp/barebox/ and recipes-bsp/u-boot/

• Kernels in recipes-kernel/linux/ and dynamic-layers/fsl-bsp-release/recipes-kernel/linux/

• Many machines in conf/machine/

• Proprietary OpenGL ES/EGL user space libraries for AM335x and i.MX 6 platforms

• Proprietary OpenCL libraries for i.MX 6 platforms

meta-ampliphy

This is our example distribution and BSP layer. It extends the basic configuration of Poky with software
projects described by all the other BSP components. It provides a base for your specific development
scenarios. The current features are:

• systemd init system

• Images: phytec-headless-image for non-graphics applications

PHYTEC BSP Introduction 18

https://rauc.readthedocs.io/en/latest/index.html
https://wiki.yoctoproject.org/wiki/System_Update
https://docs.yoctoproject.org/4.2.4/bsp-guide/index.html
https://docs.yoctoproject.org/4.2.4/bsp-guide/index.html
https://www.freedesktop.org/wiki/Software/systemd/

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

• Camera integration with OpenCV and GStreamer examples for the i.MX 6 platform bundled in a
phytec-vision-image

• RAUC integration: we set up basic support for an A/B system image update, which is possible locally
and over-the-air

meta-qt6-phytec

This is our layer for Qt6 board integration and examples. The features are:

• Qt6 with eglfs backend for PHYTEC’s AM335x, i.MX 6 and RK3288 platforms

• Images: phytec-qt6demo-image for Qt6 and video applications

• A Qt6 demo application demonstrating how to create a Qt6 project using QML widgets and a Bitbake
recipe for the Yocto and systemd integration. It can be found in sources/meta-qt6-phytec/recipes-qt/
examples/phytec-qtdemo_git.bb

meta-virtualization

• This layer provides support for building Xen, KVM, Libvirt, and associated packages necessary for
constructing OE-based virtualized solutions.

meta-security

• This layer provides security tools, hardening tools for Linux kernels, and libraries for implementing
security mechanisms.

meta-selinux

• This layer’s purpose is to enable SE Linux support. The majority of this layer’s work is accomplished
in bbappend files, used to enable SE Linux support in existing recipes.

meta-browser

• This is an application layer to add recent web browsers (Chromium, Firefox, etc.).

meta-rust

• Includes the Rust compiler and the Cargo package manager for Rust.

meta-timesys

• Timesys layer for Vigiles Yocto CVE monitoring, security notifications, and image manifest generation.

meta-freescale

• This layer provides support for the i.MX, Layerscape, and QorIQ product lines.

meta-freescale-3rdparty

• Provides support for boards from various vendors.

meta-freescale-distro

• This layer provides support for Freescale’s Demonstration images for use with OpenEmbedded and/or
Yocto Freescale’s BSP layer.

PHYTEC BSP Introduction 19

https://doc.qt.io/qt-5/embedded-linux.html

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

base (fsl-community-bsp-base)

• This layer provides BSP base files of NXP.

meta-fsl-bsp-release

• This is the i.MX Yocto Project Release Layer.

8.1.3 BSP Content
The BSP content gets pulled from different online sources when you first start using Bitbake. All files will
be downloaded and cloned in a local directory configured as DL_DIR in Yocto. If you backup your BSP with
the complete content, those sources have to be backed up, too. How you can do this will be explained in the
chapter Generating Source Mirrors, working Offline.

8.2 Build Configuration
The BSP initializes a build folder that will contain all files you create by running Bitbake commands. It
contains a conf folder that handles build input variables.

• bblayers.conf defines activated meta-layers,

• local.conf defines build input variables specific to your build

• site.conf defines build input variables specific to the development host

The two topmost build input variables are DISTRO and MACHINE. They are preconfigured local.conf when
you check out the BSP using phyLinux.

We use “Ampliphy” as DISTRO with our BSP. This distribution will be preselected and give you a starting
point for implementing your own configuration.

A MACHINE defines a binary image that supports specific hardware combinations of module and baseboard.
Check the machine.conf file or our webpage for a description of the hardware.

PHYTEC BSP Introduction 20

CHAPTER

NINE

PRE-BUILT IMAGES

For each BSP we provide pre-built target images that can be downloaded from the PHYTEC FTP server:
https://download.phytec.de/Software/Linux/

These images are also used for the BSP tests, which are flashed to the boards during production. You can
use the provided .wic images to create a bootable SD card at any time. Identify your hardware and flash
the downloaded image file to an empty SD card using dd. Please see section Images for information about
the correct usage of the command.

21

https://download.phytec.de/Software/Linux/

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

Pre-built Images 22

CHAPTER

TEN

BSP WORKSPACE INSTALLATION

10.1 Setting Up the Host
You can set up the host or use one of our build-container to run a Yocto build. You need to have a running
Linux distribution. It should be running on a powerful machine since a lot of compiling will need to be done.

If you want to use a build-container, you only need to install following packages on your host

host:~$ sudo apt install wget git

Continue with the next step Git Configuration after that. The documentation for using build-container can
be found in this manual after Advanced Usage of phyLinux.

Else Yocto needs a handful of additional packages on your host. For Ubuntu you need

host:~$ sudo apt install gawk wget git diffstat unzip texinfo \
gcc build-essential chrpath socat cpio python3 python3-pip \
python3-pexpect xz-utils debianutils iputils-ping python3-git \
python3-jinja2 libegl1-mesa libsdl1.2-dev \
python3-subunit mesa-common-dev zstd liblz4-tool file locales

For other distributions you can find information in the Yocto Quick Build: https://docs.yoctoproject.org/4.
2.4/brief-yoctoprojectqs/index.html

10.2 Git Configuration
The BSP heavily utilizes Git. Git needs some information from you as a user to identify who made changes.
Create a ~/.gitconfig with the following content, if you do not have one

[user]
name = <Your Name>
email = <Your Mail>

[core]
editor = vim

[merge]
tool = vimdiff

[alias]
co = checkout
br = branch
ci = commit
st = status
unstage = reset HEAD --

(continues on next page)

23

https://docs.yoctoproject.org/4.2.4/brief-yoctoprojectqs/index.html
https://docs.yoctoproject.org/4.2.4/brief-yoctoprojectqs/index.html

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

(continued from previous page)

last = log -1 HEAD
[push]

default = current
[color]

ui = auto

You should set name and email in your Git configuration, otherwise, Bitbake will complain during the first
build. You can use the two commands to set them directly without editing ~/.gitconfig manually

host:~$ git config --global user.email "your_email@example.com"
host:~$ git config --global user.name "name surname"

10.3 site.conf Setup
Before starting the Yocto build, it is advisable to configure the development setup. Two things are most
important: the download directory and the cache directory. PHYTEC strongly recommends configuring the
setup as it will reduce the compile time of consequent builds.

A download directory is a place where Yocto stores all sources fetched from the internet. It can contain
tar.gz, Git mirror, etc. It is very useful to set this to a common shared location on the machine. Create
this directory with 777 access rights. To share this directory with different users, all files need to have group
write access. This will most probably be in conflict with default umask settings. One possible solution would
be to use ACLs for this directory

host:~$ sudo apt-get install acl
host:~$ sudo setfacl -R -d -m g::rwx <dl_dir>

If you have already created a download directory and want to fix the permissions afterward, you can do so
with

host:~$ sudo find /home/share/ -perm /u=r ! -perm /g=r -exec chmod g+r \{\} \;
host:~$ sudo find /home/share/ -perm /u=w ! -perm /g=w -exec chmod g+w \{\} \;
host:~$ sudo find /home/share/ -perm /u=x ! -perm /g=x -exec chmod g+x \{\} \;

The cache directory stores all stages of the build process. Poky has quite an involved caching infrastructure.
It is advisable to create a shared directory, as all builds can access this cache directory, called the shared
state cache.

Create the two directories on a drive where you have approximately 50 GB of space and assign the two
variables in your build/conf/local.conf:

DL_DIR ?= "<your_directory>/yocto_downloads"
SSTATE_DIR ?= "<your_directory>/yocto_sstate"

If you want to know more about configuring your build, see the documented example settings

sources/poky/meta-yocto/conf/local.conf.sample
sources/poky/meta-yocto/conf/local.conf.sample.extended

BSP Workspace Installation 24

CHAPTER

ELEVEN

PHYLINUX DOCUMENTATION

The phyLinux script is a basic management tool for PHYTEC Yocto BSP releases written in Python. It is
mainly a helper to get started with the BSP structure. You can get all the BSP sources without the need of
interacting with Repo or Git.

The phyLinux script has only one real dependency. It requires the wget tool installed on your host. It will
also install the Repo tool in a global path (/usr/local/bin) on your host PC. You can install it in a different
location manually. Repo will be automatically detected by phyLinux if it is found in the PATH. The Repo
tool will be used to manage the different Git repositories of the Yocto BSP.

11.1 Get phyLinux
The phyLinux script can be found on the PHYTEC download server: https://download.phytec.de/Software/
Linux/Yocto/Tools/phyLinux

11.2 Basic Usage
For the basic usage of phyLinux, type

host:~$./phyLinux --help

which will result in

usage: phyLinux [-h] [-v] [--verbose] {init,info,clean} ...

This Programs sets up an environment to work with The Yocto Project on Phytecs
Development Kits. Use phyLinx <command> -h to display the help text for the
available commands.

positional arguments:
{init,info,clean} commands
init init the phytec bsp in the current directory
info print info about the phytec bsp in the current directory
clean Clean up the current working directory

optional arguments:
-h, --help show this help message and exit
-v, --version show program's version number and exit
--verbose

25

https://source.android.com/docs/setup/download
https://download.phytec.de/Software/Linux/Yocto/Tools/phyLinux
https://download.phytec.de/Software/Linux/Yocto/Tools/phyLinux

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

11.3 Initialization
Create a fresh project folder

host:~$ mkdir ~/yocto

Calling phyLinux will use the default Python version. Starting with Ubuntu 20.04 it will be Python3. If
you want to initiate a BSP, which is not compatible with Python3, you need to set Python2 as default
(temporarily) before running phyLinux

host:~$ ln -s \`which python2\` python && export PATH=`pwd`:$PATH

Now run phyLinux from the new folder

host:~$./phyLinux init

A clean folder is important because phyLinux will clean its working directory. Calling phyLinux from a
directory that isn’t empty will result in the following warning:

This current directory is not empty. It could lead to errors in the BSP configuration
process if you continue from here. At the very least, you have to check your build directory
for settings in bblayers.conf and local.conf, which will not be handled correctly in
all cases. It is advisable to start from an empty directory of call:
$./phyLinux clean
Do you really want to continue from here?
[yes/no]:

On the first initialization, the phyLinux script will ask you to install the Repo tool in your /usr/local/bin
directory. During the execution of the init command, you need to choose your processor platform (SoC),
PHYTEC’s BSP release number, and the hardware you are working on

* Please choose one of the available SoC Platforms:
*
* 1: am335x
* 2: am57x
* 3: am62ax
* 4: am62x
* 5: am64x
* 6: am68x
* 7: imx6
* 8: imx6ul
* 9: imx7
* 10: imx8
* 11: imx8m
* 12: imx8mm
* 13: imx8mp
* 14: imx8x
* 15: imx93
* 16: nightly
* 17: rk3288
* 18: stm32mp13x
* 19: stm32mp15x
* 20: topic

(continues on next page)

phyLinux Documentation 26

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

(continued from previous page)

Exemplary output for chosen imx93

* Please choose one of the available Releases:
*
* 1: BSP-Yocto-NXP-i.MX93-ALPHA1
* 2: BSP-Yocto-NXP-i.MX93-PD24.1-rc1
* 3: BSP-Yocto-NXP-i.MX93-PD24.1.0
* 4: BSP-Yocto-NXP-i.MX93-PD24.1.1-rc1
* 5: BSP-Yocto-NXP-i.MX93-PD24.1.1-rc2
* 6: BSP-Yocto-NXP-i.MX93-PD24.1.1-rc3
* 7: BSP-Yocto-NXP-i.MX93-PD24.1.1

Exemplary output for chosen BSP-Yocto-NXP-i.MX93-PD24.1.1

* Please choose one of the available builds:
*
no: machine: description and article number

distro: supported yocto distribution
target: supported build target

1: phyboard-nash-imx93-1: PHYTEC phyBOARD-Nash i.MX93
2 GB RAM, eMMC
PB-04729-001, PCL-077-23231211I
distro: ampliphy-vendor
target: phytec-headless-image

2: phyboard-nash-imx93-1: PHYTEC phyBOARD-Nash i.MX93
2 GB RAM, eMMC
PB-04729-001, PCL-077-23231211I
distro: ampliphy-vendor-rauc
target: phytec-headless-bundle

3: phyboard-nash-imx93-1: PHYTEC phyBOARD-Nash i.MX93
2 GB RAM, eMMC
PB-04729-001, PCL-077-23231211I
distro: ampliphy-vendor-wayland
target: -c populate_sdk phytec-qt6demo-image
target: phytec-qt6demo-image

4: phyboard-segin-imx93-2: PHYTEC phyBOARD-Segin i.MX93
1 GB RAM, eMMC, silicon revision A1
PB-02029-001, PCL-077-11231010I
distro: ampliphy-vendor
target: phytec-headless-image

5: phyboard-segin-imx93-2: PHYTEC phyBOARD-Segin i.MX93
1 GB RAM, eMMC, silicon revision A1
PB-02029-001, PCL-077-11231010I
distro: ampliphy-vendor-rauc
target: phytec-headless-bundle

6: phyboard-segin-imx93-2: PHYTEC phyBOARD-Segin i.MX93
1 GB RAM, eMMC, silicon revision A1
PB-02029-001, PCL-077-11231010I
distro: ampliphy-vendor-wayland
target: phytec-qt6demo-image

phyLinux Documentation 27

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

If you cannot identify your board with the information given in the selector, have a look at the invoice for
the product. After the configuration is done, you can always run

host:~$./phyLinux info

Exemplary output
**
* The current BSP configuration is:
*
* SoC: refs/heads/imx93
* Release: BSP-Yocto-NXP-i.MX93-PD24.1.1
* Machine: phyboard-segin-imx93-2
*
**

to see which SoC and Release are selected in the current workspace. If you do not want to use the selector,
phyLinux also supports command-line arguments for several settings

host:~$ MACHINE=phyboard-segin-imx93-2 ./phyLinux init -p imx93 -r BSP-Yocto-NXP-i.MX93-PD24.1.1

or view the help command for more information

host:~$./phyLinux init --help

usage: phyLinux init [-h] [--verbose] [--no-init] [-o REPOREPO] [-b REPOREPO_BRANCH] [-x XML] [-
↪→u URL] [-p PLATFORM] [-r RELEASE]

options:
-h, --help show this help message and exit
--verbose
--no-init dont execute init after fetch
-o REPOREPO Use repo tool from another url
-b REPOREPO_BRANCH Checkout different branch of repo tool
-x XML Use a local XML manifest
-u URL Manifest git url
-p PLATFORM Processor platform
-r RELEASE Release version

After the execution of the init command, phyLinux will print a few important notes as well as information
for the next steps in the build process.

11.4 Advanced Usage
phyLinux can be used to transport software states over any medium. The state of the software is uniquely
identified by manifest.xml. You can create a manifest, send it to another place and recover the software state
with

host:~$./phyLinux init -x manifest.xml

You can also create a Git repository containing your software states. The Git repository needs to have
branches other than master, as we reserved the master branch for different usage. Use phyLinux to check
out the states

phyLinux Documentation 28

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

host:~$./phyLinux -u <url-of-your-git-repo>

phyLinux Documentation 29

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

phyLinux Documentation 30

CHAPTER

TWELVE

USING BUILD-CONTAINER

Warning

Currently, it is not possible to run the phyLinux script inside of a container. After a complete init with
the phyLinux script on your host machine, you can use a container for the build. If you do not have
phyLinux script running on your machine, please see phyLinux Documentation.

There are various possibilities to run a build-container. Commonly used is docker and podman, though we
prefer podman as it does not need root privileges to run.

12.1 Installation
How to install podman: https://podman.io How to install docker: https://docs.docker.com/engine/install/

12.2 Available container
Right now we provide 4 different container based on Ubuntu LTS versions: https://hub.docker.com/u/
phybuilder

• yocto-ubuntu-16.04

• yocto-ubuntu-18.04

• yocto-ubuntu-20.04

• yocto-ubuntu-22.04

These containers can be run with podman or docker. With Yocto Project branch Mickledore the container
“yocto-ubuntu-20.04” is preferred.

12.3 Download/Pull container
host:~$ podman pull docker.io/phybuilder/yocto-ubuntu-20.04

OR

host:~$ docker pull docker.io/phybuilder/yocto-ubuntu-20.04

By adding a tag at the end separated by a colon, you can also pull or run a special tagged container.

podman pull docker.io/phybuilder/yocto-ubuntu-20.04:phy2

31

https://podman.io
https://docs.docker.com/engine/install/
https://hub.docker.com/u/phybuilder
https://hub.docker.com/u/phybuilder

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

You can find all available tags in our duckerhub space:

• https://hub.docker.com/r/phybuilder/yocto-ubuntu-16.04/tags

• https://hub.docker.com/r/phybuilder/yocto-ubuntu-18.04/tags

• https://hub.docker.com/r/phybuilder/yocto-ubuntu-20.04/tags

• https://hub.docker.com/r/phybuilder/yocto-ubuntu-22.04/tags

If you try to run a container, which is not pulled/downloaded, it will be pulled/downloaded automatically.

You can have a look at all downloaded/pulled container with:

$USERNAME@$HOSTNAME:~$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
docker.io/phybuilder/yocto-ubuntu-22.04 latest d626178e448d 4 months ago 935 MB
docker.io/phybuilder/yocto-ubuntu-22.04 phy2 d626178e448d 4 months ago 935 MB
docker.io/phybuilder/yocto-ubuntu-20.04 phy2 e29a88b7172a 4 months ago 900 MB
docker.io/phybuilder/yocto-ubuntu-20.04 latest e29a88b7172a 4 months ago 900 MB
docker.io/phybuilder/yocto-ubuntu-18.04 phy1 14c9c3e477d4 7 months ago 567 MB
docker.io/phybuilder/yocto-ubuntu-18.04 latest 14c9c3e477d4 7 months ago 567 MB
docker.io/phybuilder/yocto-ubuntu-16.04 phy1 28c73e13ab4f 7 months ago 599 MB
docker.io/phybuilder/yocto-ubuntu-16.04 latest 28c73e13ab4f 7 months ago 599 MB
docker.io/phybuilder/yocto-ubuntu-22.04 phy1 5a0ef4b41935 8 months ago 627 MB
docker.io/phybuilder/yocto-ubuntu-20.04 phy1 b5a26a86c39f 8 months ago 680 MB

12.4 Run container
To run and use container for a Yocto build, first enter to your folder, where you run phyLinux init before.
Then start the container

host:~$ podman run --rm=true -v /home:/home --userns=keep-id --workdir=$PWD -it docker.io/
↪→phybuilder/yocto-ubuntu-20.04 bash

Note

To run and use a container with docker, it is not that simple like with podman. Therefore the container-
user has to be defined and configured. Furthermore forwarding of credentials is not given per default and
has to be configured as well.

Now your commandline should look something like that (where $USERNAME is the user, who called “pod-
man run” and the char/number code diffs every time a container is started)

$USERNAME@6593e2c7b8f6:~$

Warning

If the given username is “root” you will not be able to run bitbake at all. Please be sure, you run the
container with your own user.

Now you are ready to go on and starting the build. To stop/close the container, just call

Using build-container 32

https://hub.docker.com/r/phybuilder/yocto-ubuntu-16.04/tags
https://hub.docker.com/r/phybuilder/yocto-ubuntu-18.04/tags
https://hub.docker.com/r/phybuilder/yocto-ubuntu-20.04/tags
https://hub.docker.com/r/phybuilder/yocto-ubuntu-22.04/tags

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

$USERNAME@6593e2c7b8f6:~$ exit

Using build-container 33

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

Using build-container 34

CHAPTER

THIRTEEN

WORKING WITH POKY AND BITBAKE

13.1 Start the Build
After you download all the metadata with phyLinux init, you have to set up the shell environment variables.
This needs to be done every time you open a new shell for starting builds. We use the shell script provided
by Poky in its default configuration. From the root of your project directory type

host:~$ source sources/poky/oe-init-build-env

The abbreviation for the source command is a single dot

host:~$. sources/poky/oe-init-build-env

The current working directory of the shell should change to build/. Before building for the first time, you
should take a look at the main configuration file

host:~$ vim conf/local.conf

Your local modifications for the current build are stored here. Depending on the SoC, you might need to
accept license agreements. For example, to build the image for Freescale/NXP processors you need to accept
the GPU and VPU binary license agreements. You have to uncomment the corresponding line

Uncomment to accept NXP EULA # EULA can be found under
../sources/meta-freescale/EULA ACCEPT_FSL_EULA = "1"

Now you are ready to build your first image. We suggest starting with our smaller non-graphical image
phytec-headless-image to see if everything is working correctly

host:~$ bitbake phytec-headless-image

The first compile process takes about 40 minutes on a modern Intel Core i7. All subsequent builds will use
the filled caches and should take about 3 minutes.

13.2 Images images
If everything worked, the images can be found under

host:~$ cd deploy/images/<MACHINE>

The easiest way to test your image is to configure your board for SD card boot and to flash the build image
to the SD card

35

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

host:~$ sudo dd if=phytec-headless-image-<MACHINE>.wic of=/dev/<your_device> bs=1M conv=fsync

Here <your_device> could be “sde”, for example, depending on your system. Be very careful when selecting
the right drive! Selecting the wrong drive can erase your hard drive! The parameter conv=fsync forces a
data buffer to write to the device before dd returns.

After booting you can log in using a serial cable or over ssh. There is no root password. That is because of
the debug settings in conf/local.conf. If you uncomment the line

#EXTRA_IMAGE_FEATURES = "debug-tweaks"

the debug settings, like setting an empty root password, will not be applied.

13.3 Accessing the Development States between Releases
Special release manifests exist to give you access to the current development states of the Yocto BSP. They
will not be displayed in the phyLinux selection menu but need to be selected manually. This can be done
using the following command line

host:~$./phyLinux init -p master -r mickledore

This will initialize a BSP that will track the latest development state. From now on running

host:~$ repo sync

this folder will pull all the latest changes from our Git repositories.

13.4 Inspect your Build Configuration
Poky includes several tools to inspect your build layout. You can inspect the commands of the layer tool

host:~$ bitbake-layers

It can, for example, be used to view in which layer a specific recipe gets modified

host:~$ bitbake-layers show-appends

Before running a build you can also launch Toaster to be able to inspect the build details with the Toaster
web GUI

host:~$ source toaster start

Maybe you need to install some requirements, first

host:~$ pip3 install -r
../sources/poky/bitbake/toaster-requirements.txt

You can then point your browser to http://0.0.0.0:8000/ and continue working with Bitbake. All build
activity can be monitored and analyzed from this web server. If you want to learn more about Toaster,
look at https://docs.yoctoproject.org/4.2.4/toaster-manual/index.html. To shut down the Toaster web GUI
again, execute

host:~$ source toaster stop

Working with Poky and Bitbake 36

https://docs.yoctoproject.org/4.2.4/toaster-manual/index.html

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

13.5 BSP Features of meta-phytec and meta-ampliphy

13.5.1 Buildinfo
The buildinfo task is a feature in our recipes that prints instructions to fetch the source code from the public
repositories. So you do not have to look into the recipes yourself. To see the instructions, e.g. for the barebox
package, execute

host:~$ bitbake barebox -c buildinfo

in your shell. This will print something like

(mini) HOWTO: Use a local git repository to build barebox:

To get source code for this package and version (barebox-2022.02.0-phy1), execute

$ mkdir -p ~/git
$ cd ~/git
$ git clone git://git.phytec.de/barebox barebox
$ cd ~/git/barebox
$ git switch --create v2022.02.0-phy1-local-development 7fe12e65d770f7e657e683849681f339a996418b

You now have two possible workflows for your changes:

1. Work inside the git repository:
Copy and paste the following snippet to your "local.conf":

SRC_URI:pn-barebox = "git://${HOME}/git/barebox;branch=${BRANCH}"
SRCREV:pn-barebox = "${AUTOREV}"
BRANCH:pn-barebox = "v2022.02.0-phy1-local-development"

After that you can recompile and deploy the package with

$ bitbake barebox -c compile
$ bitbake barebox -c deploy

Note: You have to commit all your changes. Otherwise yocto doesn't pick them up!

2. Work and compile from the local working directory
To work and compile in an external source directory we provide the
externalsrc.bbclass. To use it, copy and paste the following snippet to your
"local.conf":

INHERIT += "externalsrc"
EXTERNALSRC:pn-barebox = "${HOME}/git/barebox"
EXTERNALSRC_BUILD:pn-barebox = "${HOME}/git/barebox"

Note: All the compiling is done in the EXTERNALSRC directory. Every time
you build an Image, the package will be recompiled and build.

NOTE: Tasks Summary: Attempted 1 tasks of which 0 didn't need to be rerun and all succeeded.
NOTE: Writing buildhistory

As you can see, everything is explained in the output.

Working with Poky and Bitbake 37

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

Warning

Using externalsrc breaks a lot of Yocto’s internal dependency mechanisms. It is not guaranteed that
any changes to the source directory are automatically picked up by the build process and incorporated
into the root filesystem or SD card image. You have to always use –force. E.g. to compile barebox and
redeploy it to deploy/images/<machine> execute

host:~$ bitbake barebox -c compile --force
host:~$ bitbake barebox -c deploy

To update the SD card image with a new kernel or image first force the compilation of it and then force a
rebuild of the root filesystem. Use

host:~$ bitbake phytec-qt6demo-image -c rootfs --force

Note that the build system is not modifying the external source directory. If you want to apply all patches
the Yocto recipe is carrying to the external source directory, run the line

SRCTREECOVEREDTASKS="" BB_ENV_PASSTHROUGH_ADDITIONS="$BB_ENV_PASSTHROUGH_ADDITIONS␣
↪→SRCTREECOVEREDTASKS" bitbake <recipe> -c patch

13.6 BSP Customization
To get you started with the BSP, we have summarized some basic tasks from the Yocto official documentation.
It describes how to add additional software to the image, change the kernel and bootloader configuration,
and integrate patches for the kernel and bootloader.

Minor modifications, such as adding software, are done in the file build/conf/local.conf. There you can
overwrite global configuration variables and make small modifications to recipes.

There are 2 ways to make major changes:

1. Either create your own layer and use bbappend files.

2. Add everything to PHYTEC’s Distro layer meta-ampliphy.

Creating your own layer is described in the section Create your own Layer.

13.6.1 Disable Qt Demo
By default, the BSP image phytec-qt6demo-image starts a Qt6 Demo application on the attached display
or monitor. If you want to stop the demo and use the Linux framebuffer console behind it, connect to the
target via serial cable or ssh and execute the shell command

target:~$ systemctl stop phytec-qtdemo.service

This command stops the demo temporarily. To start it again, reboot the board or execute

target:~$ systemctl start phytec-qtdemo.service

You can disable the service permanently, so it does not start on boot

target:~$ systemctl disable phytec-qtdemo.service

Working with Poky and Bitbake 38

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

Tip

The last command only disables the service. It does not stop immediately. To see the current status
execute
target:~$ systemctl status phytec-qtdemo.service

If you want to disable the service by default, edit the file build/conf/local.conf and add the following line

file build/conf/local.conf
SYSTEMD_AUTO_ENABLE:pn-phytec-qtdemo = "disable"

After that, rebuild the image

host:~$ bitbake phytec-qt6demo-image

13.6.2 Framebuffer Console
On boards with a display interface, the framebuffer console is enabled per default. You can attach a USB
keyboard and log in. To change the keyboard layout from the English default to German, type

target:~$ loadkeys /usr/share/keymaps/i386/qwertz/de-latin1.map.gz

To detach the framebuffer console, run

target:~$ echo 0 > sys/class/vtconsole/vtcon1/bind

To completely deactivate the framebuffer console, disable the following kernel configuration option

Device Drivers->Graphics Support->Support for framebuffer devices->Framebuffer Console Support

More information can be found at: https://www.kernel.org/doc/Documentation/fb/fbcon.txt

13.6.3 Tools Provided in the Prebuild Image
RAM Benchmark

Performing RAM and cache performance tests can best be done by using pmbw (Parallel Memory Bandwidth
Benchmark/Measurement Tool). Pmbw runs several assembly routines which all use different access patterns
to the caches and RAM of the SoC. Before running the test, make sure that you have about 2 MiB of space
left on the device for the log files. We also lower the level of the benchmark to ask the kernel more aggressively
for resources. The benchmark test will take several hours.

To start the test type

target:~$ nice -n -2 pmbw

Upon completion of the test run, the log file can be converted to a gnuplot script with

target:~$ stats2gnuplot stats.txt > run1.gnuplot

Now you can transfer the file to the host machine and install any version of gnuplot

host:~$ sudo apt-get install gnuplot host:~$ gnuplot run1.gnuplot

Working with Poky and Bitbake 39

https://www.kernel.org/doc/Documentation/fb/fbcon.txt

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

The generated plots-<machine>.pdf file contains all plots. To render single plots as png files for any web
output you can use Ghostscript

host:~$ sudo apt-get install ghostscript
host:~$ gs -dNOPAUSE -dBATCH -sDEVICE=png16m -r150 -sOutputFile='page-%00d.png' plots-phyboard-
↪→wega-am335x-1.pdf

13.6.4 Add Additional Software for the BSP Image
To add additional software to the image, look at the OpenEmbedded layer index: https://layers.
openembedded.org/layerindex/branch/mickledore/layers/

First, select the Yocto version of the BSP you have from the drop-down list in the top left corner and click
Recipes. Now you can search for a software project name and find which layer it is in. In some cases, the
program is in meta-openembedded, openembedded-core, or Poky which means that the recipe is already in
your build tree. This section describes how to add additional software when this is the case. If the package
is in another layer, see the next section.

You can also search the list of available recipes

host:~$ bitbake -s | grep <program name> # fill in program name, like in
host:~$ bitbake -s | grep lsof

When the recipe for the program is already in the Yocto build, you can simply add it by appending a
configuration option to your file build/conf/local.conf. The general syntax to add additional software to an
image is

file build/conf/local.conf
IMAGE_INSTALL:append = " <package1> <package2>"

For example, the line

file build/conf/local.conf
IMAGE_INSTALL:append = " ldd strace file lsof"

installs some helper programs on the target image.

Warning

The leading whitespace is essential for the append command.

All configuration options in local.conf apply to all images. Consequently, the tools are now included in both
images phytec-headless-image and phytec-qt6demo-image.

Notes about Packages and Recipes

You are adding packages to the IMAGE_INSTALL variable. Those are not necessarily equivalent to the
recipes in your meta-layers. A recipe defines per default a package with the same name. But a recipe can
set the PACKAGES variable to something different and is able to generate packages with arbitrary names.
Whenever you look for software, you have to search for the package name and, strictly speaking, not for
the recipe. In the worst case, you have to look at all PACKAGES variables. A tool such as Toaster can be
helpful in some cases.

If you can not find your software in the layers provided in the folder sources, see the next section to include
another layer into the Yocto build.

Working with Poky and Bitbake 40

https://layers.openembedded.org/layerindex/branch/mickledore/layers/
https://layers.openembedded.org/layerindex/branch/mickledore/layers/

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

References: Yocto 4.2.4 Documentation - Customizing Yocto builds

13.6.5 Add an Additional Layer
This is a step-by-step guide on how to add another layer to your Yocto build and install additional software
from it. As an example, we include the network security scanner nmap in the layer meta-security. First,
you must locate the layer on which the software is hosted. Check out the OpenEmbedded MetaData Index
and guess a little bit. The network scanner nmap is in the meta-security layer. See meta-security on
layers.openembedded.org. To integrate it into the Yocto build, you have to check out the repository and
then switch to the correct stable branch. Since the BSP is based on the Yocto ‘sumo’ build, you should try
to use the ‘sumo’ branch in the layer, too.

host:~$ cd sources
host:~$ git clone git://git.yoctoproject.org/meta-security
host:~$ cd meta-security
host:~$ git branch -r

All available remote branches will show up. Usually there should be ‘fido’, ‘jethro’, ‘krogoth’, ‘master’, …

host:~$ git checkout mickledore

Now we add the directory of the layer to the file build/conf/bblayers.conf by appending the line

file build/conf/bblayers.conf
BBLAYERS += "${BSPDIR}/sources/meta-security"

to the end of the file. After that, you can check if the layer is available in the build configuration by executing

host:~$ bitbake-layers show-layers

If there is an error like

ERROR: Layer 'security' depends on layer 'perl-layer', but this layer is not enabled in your␣
↪→configuration

the layer that you want to add (here meta-security), depends on another layer, which you need to enable first.
E.g. the dependency required here is a layer in meta-openembedded (in the PHYTEC BSP it is in the path
sources/meta-openembedded/meta-perl/). To enable it, add the following line to build/conf/bblayers.conf

file build/conf/bblayers.conf
BBLAYERS += "${BSPDIR}/sources/meta-openembedded/meta-perl"

Now the command bitbake-layers show-layers should print a list of all layers enabled including meta-security
and meta-perl. After the layer is included, you can install additional software from it as already described
above. The easiest way is to add the following line (here is the package nmap)

file build/conf/local.conf
IMAGE_INSTALL:append = " nmap"

to your build/conf/local.conf. Do not forget to rebuild the image

host:~$ bitbake phytec-qt6demo-image

Working with Poky and Bitbake 41

https://docs.yoctoproject.org/4.2.4/singleindex.html#user-configuration
https://layers.openembedded.org/layerindex/branch/mickledore/layers/
https://layers.openembedded.org/layerindex/branch/mickledore/layer/meta-security/
https://layers.openembedded.org/layerindex/branch/mickledore/layer/meta-security/

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

13.6.6 Create your own layer
Creating your layer should be one of the first tasks when customizing the BSP. You have two basic options.
You can either copy and rename our meta-ampliphy, or you can create a new layer that will contain your
changes. The better option depends on your use case. meta-ampliphy is our example of how to create a
custom Linux distribution that will be updated in the future. If you want to benefit from those changes
and are, in general, satisfied with the userspace configuration, it could be the best solution to create your
own layer on top of Ampliphy. If you need to rework a lot of information and only need the basic hardware
support from PHYTEC, it would be better to copy meta-ampliphy, rename it, and adapt it to your needs.
You can also have a look at the OpenEmbedded layer index to find different distribution layers. If you just
need to add your own application to the image, create your own layer.

In the following chapter, we have an embedded project called “racer” which we will implement using our
Ampliphy Linux distribution. First, we need to create a new layer.

Yocto provides a script for that. If you set up the BSP and the shell is ready, type

host:~$ bitbake-layers create-layer meta-racer

Default options are fine for now. Move the layer to the source directory

host:~$ mv meta-racer ../sources/

Create a Git repository in this layer to track your changes

host:~$ cd ../sources/meta-racer
host:~$ git init && git add . && git commit -s

Now you can add the layer directly to your build/conf/bblayers.conf

BBLAYERS += "${BSPDIR}/sources/meta-racer"

or with a script provided by Yocto

host:~$ bitbake-layers add-layer meta-racer

13.6.7 Kernel and Bootloader Recipe and Version
First, you need to know which kernel and version are used for your target machine. PHYTEC provides
multiple kernel recipes linux-mainline, linux-ti and linux-imx. The first one provides support for PHYTEC’s
i.MX 6 and AM335x modules and is based on the Linux kernel stable releases from kernel.org. The Git
repositories URLs are:

• linux-mainline: git://git.phytec.de/linux-mainline

• linux-ti: git://git.phytec.de/linux-ti

• linux-imx: git://git.phytec.de/linux-imx

• barebox: git://git.phytec.de/barebox

• u-boot-imx: git://git.phytec.de/u-boot-imx

To find your kernel provider, execute the following command

host:~$ bitbake virtual/kernel -e | grep "PREFERRED_PROVIDER_virtual/kernel"

The command prints the value of the variable PREFERRED_PROVIDER_virtual/kernel. The variable is
used in the internal Yocto build process to select the kernel recipe to use. The following lines are different
outputs you might see

Working with Poky and Bitbake 42

https://kernel.org/

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

PREFERRED_PROVIDER_virtual/kernel="linux-mainline"
PREFERRED_PROVIDER_virtual/kernel="linux-ti"
PREFERRED_PROVIDER_virtual/kernel="linux-imx"

To see which version is used, execute bitbake -s. For example

host:~$ bitbake -s | egrep -e "linux-mainline|linux-ti|linux-imx|barebox|u-boot-imx"

The parameter -s prints the version of all recipes. The output contains the recipe name on the left and the
version on the right

barebox :2022.02.0-phy1-r7.0
barebox-hosttools-native :2022.02.0-phy1-r7.0
barebox-targettools :2022.02.0-phy1-r7.0
linux-mainline :5.15.102-phy1-r0.0

As you can see, the recipe linux-mainline has version 5.15.102-phy1. In the PHYTEC’s linux-mainline Git
repository, you will find a corresponding tag v5.15.102-phy1. The version of the barebox recipe is 2022.02.0-
phy1. On i.MX8M* modules the output will contain linux-imx and u-boot-imx.

13.6.8 Kernel and Bootloader Configuration
The bootloader used by PHYTEC, barebox, uses the same build system as the Linux kernel. Therefore, all
commands in this section can be used to configure the kernel and bootloader. To configure the kernel or
bootloader, execute one of the following commands

host:~$ bitbake -c menuconfig virtual/kernel # Using the virtual provider name
host:~$ bitbake -c menuconfig linux-ti # Or use the recipe name directly
host:~$ bitbake -c menuconfig linux-mainline # Or use the recipe name directly (If you use an i.
↪→MX 6 or RK3288 Module)
host:~$ bitbake -c menuconfig linux-imx # Or use the recipe name directly (If you use an i.
↪→MX 8M*)
host:~$ bitbake -c menuconfig barebox # Or change the configuration of the bootloader
host:~$ bitbake -c menuconfig u-boot-imx # Or change the configuration of the bootloader␣
↪→(If you use an i.MX 8M*)

After that, you can recompile and redeploy the kernel or bootloader

host:~$ bitbake virtual/kernel -c compile # Or 'barebox' for the bootloader
host:~$ bitbake virtual/kernel -c deploy # Or 'barebox' for the bootloader

Instead, you can also just rebuild the complete build output with

host:~$ bitbake phytec-headless-image # To update the kernel/bootloader, modules and the images

In the last command, you can replace the image name with the name of an image of your choice. The new
images and binaries are in build/deploy/images/<machine>/.

Warning

The build configuration is not permanent yet. Executing bitbake virtual/kernel -c clean will remove
everything.

Working with Poky and Bitbake 43

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

To make your changes permanent in the build system, you have to integrate your configuration modifications
into a layer. For the configuration you have two options:

• Include only a configuration fragment (a minimal diff between the old and new configuration)

• Complete default configuration (defconfig) after your modifications.

Having a set of configuration fragments makes what was changed at which stage more transparent. You
can turn on and off the changes, you can manage configurations for different situations and it helps when
porting changes to new kernel versions. You can also group changes together to reflect specific use cases. A
fully assembled kernel configuration will be deployed in the directory build/deploy/images/<machine>. If
you do not have any of those requirements, it might be simpler to just manage a separate defconfig file.

Add a Configuration Fragment to a Recipe

The following steps can be used for both kernel and bootloader. Just replace the recipe name linux-mainline
in the commands with linux-ti, or barebox for the bootloader. If you did not already take care of this, start
with a clean build. Otherwise, the diff of the configuration may be wrong

host:~$ bitbake linux-mainline -c clean
host:~$ bitbake linux-mainline -c menuconfig

Make your configuration changes in the menu and generate a config fragment

host:~$ bitbake linux-mainline -c diffconfig

which prints the path of the written file

Config fragment has been dumped into:
/home/<path>/build/tmp/work/phyboard_mira_imx6_11-phytec-linux-gnueabi/linux-mainline/4.19.100-
↪→phy1-r0.0/fragment.cfg

All config changes are in the file fragment.cfg which should consist of only some lines. The following example
shows how to create a bbappend file and how to add the necessary lines for the config fragment. You just have
to adjust the directories and names for the specific recipe: linux-mainline, linux-ti, linux-imx, u-boot-imx,
or barebox.

sources/<layer>/recipes-kernel/linux/linux-mainline_%.bbappend # For the recipe linux-
↪→mainline
sources/<layer>/recipes-kernel/linux/linux-ti_%.bbappend # For the recipe linux-ti
sources/<layer>/recipes-kernel/linux/linux-imx_%.bbappend # For the recipe linux-imx
sources/<layer>/recipes-bsp/barebox/barebox_%.bbappend # For the recipe barebox
sources/<layer>/recipes-bsp/u-boot/u-boot-imx_%.bbappend # For the recipe u-boot-imx

Replace the string layer with your own layer created as shown above (e.g. meta-racer), or just use meta-
ampliphy. To use meta-ampliphy, first, create the directory for the config fragment and give it a new name
(here enable-r8169.cfg) and move the fragment to the layer.

host:~$ mkdir -p sources/meta-ampliphy/recipes-kernel/linux/features
copy the path from the output of *diffconfig*
host:~$ cp /home/<path>/build/tmp/work/phyboard_mira_imx6_11-phytec-linux-gnueabi/linux-mainline/
↪→4.19.100-phy1-r0.0/fragment.cfg \

sources/meta-ampliphy/recipes-kernel/linux/features/enable-r8169.cfg

Then open the bbappend file (in this case sources/meta-ampliphy/recipes-kernel/linux/linux-
mainline_%.bbappend) with your favorite editor and add the following lines

Working with Poky and Bitbake 44

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

contents of the file linux-mainline_%.bbappend
FILESEXTRAPATHS:prepend := "${THISDIR}/features:"
SRC_URI:append = " \

file://enable-r8169.cfg \
"

Warning

Do not forget to use the correct bbappend filenames: linux-ti_%.bbappend for the linux-ti recipe and
barebox_%.bbappend for the bootloader in the folder recipes-bsp/barebox/ !

After saving the bbappend file, you have to rebuild the image. Yocto should pick up the recipe changes
automatically and generate a new image

host:~$ bitbake phytec-headless-image # Or another image name

Add a Complete Default Configuration (defconfig) to a Recipe

This approach is similar to the one above, but instead of adding a fragment, a defconfig is used. First, create
the necessary folders in the layer you want to use, either your own layer or meta-ampliphy

host:~$ mkdir -p sources/meta-ampliphy/recipes-kernel/linux/features/ # For both linux-mainline␣
↪→and linux-ti
host:~$ mkdir -p sources/meta-ampliphy/recipes-bsp/barebox/features/ # Or for the bootloader

Then you have to create a suitable defconfig file. Make your configuration changes using menuconfig and
then save the defconfig file to the layer

host:~$ bitbake linux-mainline -c menuconfig # Or use recipe name linux-ti or barebox
host:~$ bitbake linux-mainline -c savedefconfig # Create file 'defconfig.temp' in the work␣
↪→directory

This will print the path to the generated file

Saving defconfig to/defconfig.temp

Then, as above, copy the generated file to your layer, rename it to defconfig, and add the following lines to
the bbappend file (here sources/meta-ampliphy/recipes-kernel/linux/linux-mainline_%.bbappend)

contents of the file linux-mainline_%.bbappend
FILESEXTRAPATHS:prepend := "${THISDIR}/features:"
SRC_URI:append = " \

file://defconfig \
"

Tip

Do not forget to use the correct bbappend filenames: linux-ti_%.bbappend for the linux-ti recipe and
barebox_%.bbappend for the bootloader in the folder recipes-bsp/barebox/ !

After that, rebuild your image as the changes are picked up automatically

Working with Poky and Bitbake 45

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

host:~$ bitbake phytec-headless-image # Or another image name

13.6.9 Patch the Kernel or Bootloader with devtool
Apart from using the standard versions of kernel and bootloader which are provided in the recipes, you can
modify the source code or use our own repositories to build your customized kernel.

PRO CON
Standard workflow of the official Yocto docu-
mentation

Uses additional hard drive space as the sources get du-
plicated

Toolchain does not have to recompile everything No optimal cache usage, build overhead

Devtool is a set of helper scripts to enhance the user workflow of Yocto. It was integrated with version 1.8.
It is available as soon as you set up your shell environment. Devtool can be used to:

• modify existing sources

• integrate software projects into your build setup

• build software and deploy software modifications to your target

Here we will use devtool to patch the kernel. We use linux-mainline as an example for the AM335x Kernel.
The first command we use is devtool modify - x <recipe> <directory>

host:~$ devtool modify -x linux-mainline linux-mainline

Devtool will create a layer in build/workspace where you can see all modifications done by devtool . It will
extract the sources corresponding to the recipe to the specified directory. A bbappend will be created in
the workspace directing the SRC_URI to this directory. Building an image with Bitbake will now use the
sources in this directory. Now you can modify lines in the kernel

host:~$ vim linux-mainline/arch/arm/boot/dts/am335x-phycore-som.dtsi
-> make a change

host:~$ bitbake phytec-qt6demo-image

Your changes will now be recompiled and added to the image. If you want to store your changes permanently,
it is advisable to create a patch from the changes, then store and backup only the patch. You can go into
the linux-mainline directory and create a patch using Git. How to create a patch is described in Patch the
Kernel or Bootloader using the “Temporary Method” and is the same for all methods.

If you want to learn more about devtool, visit:

Yocto 4.2.4 - Devtool or Devtool Quick Reference

13.6.10 Patch the Kernel or Bootloader using the “Temporary Method”

PRO CON
No overhead, no extra configuration Changes are easily overwritten by Yocto (Everything is

lost!!).
Toolchain does not have to recompile every-
thing

It is possible to alter the source code before Bitbake configures and compiles the recipe. Use Bitbake’ s
devshell command to jump into the source directory of the recipe. Here is the barebox recipe

Working with Poky and Bitbake 46

https://docs.yoctoproject.org/4.2.4/sdk-manual/extensible.html#using-devtool-in-your-sdk-workflow
https://docs.yoctoproject.org/4.2.4/ref-manual/devtool-reference.html

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

host:~$ bitbake barebox -c devshell # or linux-mainline, linux-ti, linux-imx, u-boot-imx

After executing the command, a shell window opens. The current working directory of the shell will be
changed to the source directory of the recipe inside the tmp folder. Here you can use your favorite editor,
e.g. vim, emacs, or any other graphical editor, to alter the source code. When you are finished, exit the
devshell by typing exit or hitting CTRL-D.

After leaving the devshell you can recompile the package

host:~$ bitbake barebox -c compile --force # or linux-mainline, linux-ti, linux-imx, u-boot-imx

The extra argument ‘–force’ is important because Yocto does not recognize that the source code was changed.

Tip

You cannot execute the bitbake command in the devshell . You have to leave it first.

If the build fails, execute the devshell command again and fix it. If the build is successful, you can deploy
the package and create a new SD card image

host:~$ bitbake barebox -c deploy # new barebox in e.g. deploy/images/phyflex-imx6-2/barebox.bin
host:~$ bitbake phytec-headless-image # new WIC image in e.g. deploy/images/phyflex-imx6-2/
↪→phytec-headless-image-phyflex-imx6-2.wic

Warning

If you execute a clean e.g bitbake barebox -c clean , or if Yocto fetches the source code again, all your
changes are lost!!!

To avoid this, you can create a patch and add it to a bbappend file. It is the same workflow as described
in the section about changing the configuration.

You have to create the patch in the devshell if you use the temporary method and in the subdirectory
created by devtool if you used devtool.

host:~$ bitbake barebox -c devshell # Or linux-mainline, linux-ti
host(devshell):~$ git status # Show changes files
host(devshell):~$ git add <file> # Add a special file to the staging area
host(devshell):~$ git commit -m "important modification" # Creates a commit with a not so␣
↪→useful commit message
host(devshell):~$ git format-patch -1 -o ~/ # Creates a patch of the last commit and saves it␣
↪→in your home folder
/home/<user>/0001-important-modification.patch # Git prints the path of the written patch file
host(devshell):~$ exit

After you have created the patch, you must create a bbappend file for it. The locations for the three different
recipes - linux-mainline , linux-ti , and barebox - are

sources/<layer>/recipes-kernel/linux/linux-mainline_%.bbappend # For the recipe linux-
↪→mainline
sources/<layer>/recipes-kernel/linux/linux-ti_%.bbappend # For the recipe linux-ti
sources/<layer>/recipes-kernel/linux/linux-imx_%.bbappend # For the recipe linux-imx

(continues on next page)

Working with Poky and Bitbake 47

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

(continued from previous page)

sources/<layer>/recipes-bsp/barebox/barebox_%.bbappend # For the recipe barebox
sources/<layer>/recipes-bsp/u-boot/u-boot-imx_%.bbappend # For the recipe u-boot-imx

The following example is for the recipe barebox. You have to adjust the paths. First, create the folders and
move the patch into them. Then create the bbappend file

host:~$ mkdir -p sources/meta-ampliphy/recipes-bsp/barebox/features # Or use your own layer␣
↪→instead of *meta-ampliphy*
host:~$ cp ~/0001-important-modification.patch sources/meta-ampliphy/recipes-bsp/barebox/
↪→features # copy patch
host:~$ touch sources/meta-ampliphy/recipes-bsp/barebox/barebox_%.bbappend

Tip

Pay attention to your current work directory. You have to execute the commands in the BSP top-level
directory. Not in the build directory!

After that use your favorite editor to add the following snipped into the bbappend file (here sources/meta-
ampliphy/recipes-bsp/barebox/barebox_%.bbappend)

contents of the file barebox_%.bbappend
FILESEXTRAPATHS:prepend := "${THISDIR}/features:"
SRC_URI:append = " \

file://0001-important-modification.patch \
"

Save the file and rebuild the barebox recipe with

host:~$ bitbake barebox -c clean # Or linux-ti, linux-mainline, linux-imx, u-boot-imx
host:~$ bitbake barebox

If the build is successful, you can rebuild the final image with

host:~$ bitbake phytec-headless-image # Or another image name

Further Resources:

The Yocto Project has some documentation for software developers. Check the ‘Kernel Development Manual’
for more information about how to configure the kernel. Please note that not all of the information from the
Yocto manual can be applied to the PHYTEC BSP as we use the classic kernel approach of Yocto and most
of the documentation assumes the Yocto kernel approach.

• Yocto - Kernel Development Manual

• Yocto - Development Manual

13.6.11 Working with the Kernel and Bootloader using SRC_URI in local.conf
Here we present a third option to make kernel and bootloader changes. You have external checkouts of the
linux-mainline, linux-ti, or barebox Git repositories. You will overwrite the URL of the source code fetcher,
the variable SRC_URI, to point to your local checkout instead of the remote repositories.

Working with Poky and Bitbake 48

https://docs.yoctoproject.org/4.2.4/kernel-dev/index.html
https://docs.yoctoproject.org/4.2.4/dev-manual/index.html

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

PRO CON
All changes are saved with
Git

Many working directories in build/tmp-glibc/work/<machine>/<package>/

You have to commit every change before recompiling
For each change, the toolchain compiles everything from scratch (avoidable
with ccache)

First, you need a local clone of the Git repository barebox or kernel. If you do not have one, use the commands

host:~$ mkdir ~/git
host:~$ cd ~/git
host:~$ git clone git://git.phytec.de/barebox
host:~$ cd barebox
host:~$ git switch --create v2022.02.0-phy remotes/origin/v2022.02.0-phy

Add the following snippet to the file build/conf/local.conf

Use your own path to the git repository
NOTE: Branch name in variable "BRANCH_pn-barebox" should be the same as the
branch which is used in the repository folder. Otherwise your commits won't be recognized␣
↪→later.
BRANCH:pn-barebox = "v2022.02.0-phy"
SRC_URI:pn-barebox = "git:///${HOME}/git/barebox;branch=${BRANCH}"
SRCREV:pn-barebox = "${AUTOREV}"

You also have to set the correct BRANCH name in the file. Either you create your own branch in the Git
repository, or you use the default (here “v2015.02.0-phy”). Now you should recompile barebox from your
own source

host:~$ bitbake barebox -c clean
host:~$ bitbake barebox -c compile

The build should be successful because the source was not changed yet.

You can alter the source in ~/git/barebox or the default defconfig (e.g.
~/git/barebox/arch/arm/configs/imx_v7_defconfig). After you are satisfied with your changes, you
have to make a dummy commit for Yocto. If you do not, Yocto will not notice that the source code was
modified in your repository folder (e.g. ~/git/barebox/)

host:~$ git status # show modified files
host:~$ git diff # show changed lines
host:~$ git commit -a -m "dummy commit for yocto" # This command is important!

Try to compile your new changes. Yocto will automatically notice that the source code was changed and
fetches and configures everything from scratch.

host:~$ bitbake barebox -c compile

If the build fails, go back to the source directory, fix the problem, and recommit your changes. If the build
was successful, you can deploy barebox and even create a new SD card image.

host:~$ bitbake barebox -c deploy # new barebox in e.g. deploy/images/phyflex-imx6-2/barebox-
↪→phyflex-imx6-2.bin

(continues on next page)

Working with Poky and Bitbake 49

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

(continued from previous page)

host:~$ bitbake phytec-headless-image # new sd-card image in e.g. deploy/images/phyflex-imx6-2/
↪→phytec-headless-image-phyflex-imx6-2.wic

If you want to make additional changes, just make another commit in the repository and rebuild barebox
again.

13.6.12 Add Existing Software with “Sustainable Method”
Now that you have created your own layer, you have a second option to add existing software to existing
image definitions. Our standard image is defined in meta-ampliphy

meta-ampliphy/recipes-images/images/phytec-headless-image.bb

In your layer, you can now modify the recipe with a bbappend without modifying any BSP code

meta-racer/recipes-images/images/phytec-headless-image.bbappend

The append will be parsed together with the base recipe. As a result, you can easily overwrite all variables
set in the base recipe, which is not always what you want. If we want to include additional software, we
need to append it to the IMAGE_INSTALL variable

IMAGE_INSTALL:append = " rsync"

13.6.13 Add Linux Firmware Files to the Root Filesystem
It is a common task to add an extra firmware file to your root filesystem into /lib/firmware/. For example,
WiFi adapters or PCIe Ethernet cards might need proprietary firmware. As a solution, we use a bbappend
in our layer. To create the necessary folders, bbappend and copy the firmware file type

host:~$ cd meta-racer # go into your layer
host:~$ mkdir -p recipes-kernel/linux-firmware/linux-firmware/
host:~$ touch recipes-kernel/linux-firmware/linux-firmware_%.bbappend
host:~$ cp ~/example-firmware.bin recipes-kernel/linux-firmware/linux-firmware/ # adapt␣
↪→filename

Then add the following content to the bbappend file and replace every occurrence of example-firmware.bin
with your firmware file name.

file recipes-kernel/linux-firmware/linux-firmware_%.bbappend

FILESEXTRAPATHS:prepend := "${THISDIR}/linux-firmware:"
SRC_URI += "file://example-firmware.bin"

do_install:append () {
install -m 0644 ${WORKDIR}/example-firmware.bin ${D}/lib/firmware/example-firmware.bin

}

NOTE: Use "=+" instead of "+=". Otherwise file is placed into the linux-firmware package.
PACKAGES =+ "${PN}-example"
FILES:${PN}-example = "/lib/firmware/example-firmware.bin"

Now try to build the linux-firmware recipe

Working with Poky and Bitbake 50

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

host:~$. sources/poky/oe-init-build-env
host:~$ bitbake linux-firmware

This should generate a new package deploy/ipk/all/linux-firmware-example.

As the final step, you have to install the firmware package to your image. You can do that in your local.conf
or image recipe via

file local.conf or image recipe
IMAGE_INSTALL += "linux-firmware-example"

Warning

Ensure that you have adapted the package name linux-firmware-example with the name you assigned in
linux-firmware_%.bbappend.

13.6.14 Change the u-boot Environment via bbappend Files
All i.MX8M* products use the u-boot bootloader. The u-boot environment can be modified using the
Temporary Method. In the u-boot-imx sources modify the header file corresponding to the processor lo-
cated in include/configs/phycore_imx8m*. New environment variables should be added at the end of CON-
FIG_EXTRA_ENV_SETTINGS

#define CONFIG_EXTRA_ENV_SETTINGS \
[...]
PHYCORE_FITIMAGE_ENV_BOOTLOGIC \
"newvariable=1\0"

Commit the changes and and create the file u-boot-imx_%.bbappend in your layer at <layer>/recipes-bsp/u-
boot/u-boot-imx_%.bbappend

contents of the file u-boot-imx_%.bbappend
FILESEXTRAPATHS:prepend := "${THISDIR}/features:"
SRC_URI:append = " \

file://0001-environment-addition.patch \
"

13.6.15 Change the barebox Environment via bbappend Files
Since BSP-Yocto-AM335x-16.2.0 and BSP-Yocto-i.MX6-PD16.1.0, the barebox environment handling in
meta-phytec has changed. Now it is possible to add, change, and remove files in the barebox environment
via the Python bitbake task do_env. There are two Python functions to change the environment. Their
signatures are:

• env_add(d, ***filename as string*, ***file content as string*): to add a new file or overwrite an
existing file

• env_rm(d, ***filename as string*): to remove a file

The first example of a bbappend file in the custom layer meta-racer shows how to add a new non-volatile
variable linux.bootargs.fb in the barebox environment folder /env/nv/

Working with Poky and Bitbake 51

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

file meta-racer/recipes-bsp/barebox/barebox_2022.02.0-phy1.bbappend
python do_env:append() {

env_add(d, "nv/linux.bootargs.fb", "imxdrm.legacyfb_depth=32\n")
}

The next example shows how to replace the network configuration file /env/network/eth0

file meta-racer/recipes-bsp/barebox/barebox_2022.02.0-phy1.bbappend
python do_env:append() {

env_add(d, "network/eth0",
"""#!/bin/sh

ip setting (static/dhcp)
ip=static
global.dhcp.vendor_id=barebox-${global.hostname}

static setup used if ip=static
ipaddr=192.168.178.5
netmask=255.255.255.0
gateway=192.168.178.1
serverip=192.168.178.1
""")
}

In the above example, the Python multiline string syntax “”” text “”” is used to avoid adding multiple
newline characters \n into the recipe Python code. The Python function env_add can add and overwrite
environment files.

The next example shows how to remove an already added environment file, for example , /env/boot/mmc

file meta-racer/recipes-bsp/barebox/barebox_2022.02.0-phy1.bbappend
python do_env:append() {

env_rm(d, "boot/mmc")
}

Debugging the Environment

If you want to see all environment files that are added in the build process, you can enable a debug flag in
the local.conf

file local.conf
ENV_VERBOSE = "1"

After that, you have to rebuild the barebox recipe to see the debugging output

host:~$ bitbake barebox -c clean
host:~$ bitbake barebox -c configure

The output of the last command looks like this

[...]
WARNING: barebox-2022.02.0-phy1-r7.0 do_env_write: File 'nv/allow_color' content "false"
WARNING: barebox-2022.02.0-phy1-r7.0 do_env_write: File 'nv/linux.bootargs.base' content
↪→"consoleblank=0"

(continues on next page)

Working with Poky and Bitbake 52

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

(continued from previous page)

WARNING: barebox-2022.02.0-phy1-r7.0 do_env_write: File 'nv/linux.bootargs.fb' content "imxdrm.
↪→legacyfb_depth=32"
WARNING: barebox-2022.02.0-phy1-r7.0 do_env_write: File 'nv/linux.bootargs.rootfs' content
↪→"rootwait ro fsck.repair=yes"

Changing the Environment (depending on Machines)

If you need to apply some barebox environment modifications only to a single or only a few machines, you
can use Bitbake’ s machine overwrite syntax. For the machine overwrite syntax, you append a machine name
or SoC name (such as mx6 , ti33x, or rk3288) with an underscore to a variable or task

DEPENDS:remove:mx6 = "virtual/libgl" or
python do_env_append_phyboard-mira-imx6-4().

The next example adds the environment variables only if the MACHINE is set to phyboard-mira-imx6-4

file meta-phytec/recipes-bsp/barebox/barebox_2022.02.0-phy1.bbappend
python do_env:append:phyboard-mira-imx6-4() {

env_add(d, "nv/linux.bootargs.cma", "cma=64M\n")
}

Bitbake’s override syntax for variables is explained in more detail at: https://docs.yoctoproject.org/bitbake/
2.4/bitbake-user-manual/bitbake-user-manual-metadata.html#conditional-metadata

Upgrading the barebox Environment from Previous BSP Releases

Prior to BSP version BSP-Yocto-AM335x-16.2.0 and BSP-Yocto-i.MX6-PD16.1.0 , barebox environment
changes via bbappend file were done differently. For example, the directory structure in your meta layer (here
meta-skeleton) may have looked like this

host:~$ tree -a sources/meta-skeleton/recipes-bsp/barebox/
sources/meta-skeleton/recipes-bsp/barebox
├── barebox
│ └── phyboard-wega-am335x-3
│ ├── boardenv
│ │ └── .gitignore
│ └── machineenv
│ └── nv
│ └── linux.bootargs.cma
└── barebox_%.bbappend

and the file barebox_%.bbappend contained

file sources/meta-skeleton/recipes-bsp/barebox/barebox_%.bbappend
FILESEXTRAPATHS:prepend := "${THISDIR}/barebox:"

In this example, all environment changes from the directory boardenv in the layer meta-phytec are ignored
and the file nv/linux.bootargs.cma is added. For the new handling of the barebox environment, you use the
Python functions env_add and env_rm in the Python task do_env. Now the above example translates to a
single Python function in the file barebox_%.bbappend that looks like

file sources/meta-skeleton/recipes-bsp/barebox/barebox_%.bbappend
FILESEXTRAPATHS:prepend := "${THISDIR}/barebox:"

(continues on next page)

Working with Poky and Bitbake 53

https://docs.yoctoproject.org/bitbake/2.4/bitbake-user-manual/bitbake-user-manual-metadata.html#conditional-metadata
https://docs.yoctoproject.org/bitbake/2.4/bitbake-user-manual/bitbake-user-manual-metadata.html#conditional-metadata

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

(continued from previous page)

python do_env:append() {
Removing files (previously boardenv)
env_rm(d, "config-expansions")
Adding new files (previously machineenv)
env_add(d, "nv/linux.bootargs.cma", "cma=64M\n")

}

13.6.16 Changing the Network Configuration
To tweak IP addresses, routes, and gateways at runtime you can use the tools ifconfig and ip . Some examples

target:~$ ip addr # Show all network interfaces
target:~$ ip route # Show all routes
target:~$ ip addr add 192.168.178.11/24 dev eth0 # Add static ip and route to interface␣
↪→eth0
target:~$ ip route add default via 192.168.178.1 dev eth0 # Add default gateway 192.168.178.1
target:~$ ip addr del 192.168.178.11/24 dev eth0 # Remove static ip address from␣
↪→interface eth0

The network configuration is managed by systemd-networkd . To query the current status use

target:~$ networkctl status
target:~$ networkctl list

The network daemon reads its configuration from the directories /etc/systemd/network/ ,
/run/systemd/network/ , and /lib/systemd/network/ (from higher to lower priority). A sample con-
figuration in /lib/systemd/network/10-eth0.network looks like this

file /lib/systemd/network/10-eth0.network
[Match]
Name=eth0

[Network]
Address=192.168.3.11/24
Gateway=192.168.3.10

These files *.network replace /etc/network/interfaces from other distributions. You can either edit the file
10-eth0.network in-place or copy it to /etc/systemd/network/ and make your changes there. After changing
a file you must restart the daemon to apply your changes

target:~$ systemctl restart systemd-networkd

To see the syslog message of the network daemon, use

target:~$ journalctl --unit=systemd-networkd.service

To modify the network configuration at build time, look at the recipe sources/meta-ampliphy/recipes-
core/systemd/systemd-machine-units.bb and the interface files in the folder meta-ampliphy/recipes-
core/systemd/systemd-machine-units/ where the static IP address configuration for eth0 (and optionally
eth1) is done.

For more information, see https://wiki.archlinux.org/title/Systemd-networkd and https://www.freedesktop.
org/software/systemd/man/latest/systemd.network.html.

Working with Poky and Bitbake 54

https://wiki.archlinux.org/title/Systemd-networkd
https://www.freedesktop.org/software/systemd/man/latest/systemd.network.html
https://www.freedesktop.org/software/systemd/man/latest/systemd.network.html

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

13.6.17 Changing the Wireless Network Configuration
Connecting to a WLAN Network

• First set the correct regulatory domain for your country

target:~$ iw reg set DE
target:~$ iw reg get

You will see

country DE: DFS-ETSI
(2400 - 2483 @ 40), (N/A, 20), (N/A)
(5150 - 5250 @ 80), (N/A, 20), (N/A), NO-OUTDOOR
(5250 - 5350 @ 80), (N/A, 20), (0 ms), NO-OUTDOOR, DFS
(5470 - 5725 @ 160), (N/A, 26), (0 ms), DFS
(57000 - 66000 @ 2160), (N/A, 40), (N/A)

• Set up the wireless interface

target:~$ ip link # list all interfaces. Search for wlan*
target:~$ ip link set up dev wlan0

• Now you can scan for available networks

target:~$ iw wlan0 scan | grep SSID

You can use a cross-platform supplicant with support for WEP, WPA, and WPA2 called wpa_supplicant for
an encrypted connection.

• To do so, add the network credentials to the file /etc/wpa_supplicant.conf

Confluence country=DE network={ ssid="<SSID>" proto=WPA2 psk="<KEY>" }

• Now a connection can be established

target:~$ wpa_supplicant -Dnl80211 -c/etc/wpa_supplicant.conf -iwlan0 -B

This should result in the following output

ENT-CONNECTED - Connection to 88:33:14:5d:db:b1 completed [id=0 id_str=]

To finish the configuration you can configure DHCP to receive an IP address (supported by most WLAN
access points). For other possible IP configurations, see the section Changing the Network Configuration.

• First, create the directory

target:~$ mkdir -p /etc/systemd/network/

• Then add the following configuration snippet in /etc/systemd/network/10-wlan0.network

file /etc/systemd/network/10-wlan0.network
[Match]
Name=wlan0

[Network]
DHCP=yes

Working with Poky and Bitbake 55

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

• Now, restart the network daemon so that the configuration takes effect

target:~$ systemctl restart systemd-networkd

Creating a WLAN Access Point

This section provides a basic access point (AP) configuration for a secured WPA2 network.

Find the name of the WLAN interface with

target:~$ ip link

Edit the configuration in /etc/hostapd.conf. It is strongly dependent on the use case. The following shows
an example

file /etc/hostapd.conf
interface=wlan0
driver=nl80211
ieee80211d=1
country_code=DE
hw_mode=g
ieee80211n=1
ssid=Test-Wifi
channel=2
wpa=2
wpa_passphrase=12345678
wpa_key_mgmt=WPA-PSK
wpa_pairwise=CCMP

Set up and start the DHCP server for the network interface wlan0 via systemd-networkd

target:~$ mkdir -p /etc/systemd/network/
target:~$ vi /etc/systemd/network/10-wlan0.network

Insert the following text into the file

[Match]
Name=wlan0

[Network]
Address=192.168.0.1/24
DHCPServer=yes

[DHCPServer]
EmitDNS=yes
target:~$ systemctl restart systemd-networkd
target:~$ systemctl status systemd-networkd -l # check status and see errors

Start the userspace daemon hostapd

target:~$ systemctl start hostapd
target:~$ systemctl status hostapd -l # check for errors

Now, you should see the WLAN network Test-Wifi on your terminal device (laptop, smartphone, etc.).

If there are problems with the access point, you can either check the log messages with

Working with Poky and Bitbake 56

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

target:~$ journalctl --unit=hostapd

or start the daemon in debugging mode from the command line

target:~$ systemctl stop hostapd
target:~$ hostapd -d /etc/hostapd.conf -P /var/run/hostapd.pid

You should see

...
wlan0: interface state UNINITIALIZED->ENABLED
wlan0: AP-ENABLED

Further information about AP settings and the userspace daemon hostapd can be found at

https://wireless.wiki.kernel.org/en/users/documentation/hostapd
https://w1.fi/hostapd/

phyCORE-i.MX 6UL/ULL Bluetooth

Special consideration must be paid when working with any Bluetooth on a phyCORE-i.MX 6UL/ULL. For
further information, please check L-844e.A5 i.MX 6UL/ULL BSP Manual - Bluetooth.

13.6.18 Add OpenCV Libraries and Examples
OpenCV (Opensource Computer Vision https://opencv.org/) is an open-source library for computer vision
applications.

To install the libraries and examples edit the file conf/local.conf in the Yocto build system and add

file conf/local.conf
Installing OpenCV libraries and examples
LICENSE_FLAGS_ACCEPTED += "commercial_libav"
LICENSE_FLAGS_ACCEPTED += "commercial_x264"
IMAGE_INSTALL:append = " \

opencv \
opencv-samples \
libopencv-calib3d2.4 \
libopencv-contrib2.4 \
libopencv-core2.4 \
libopencv-flann2.4 \
libopencv-gpu2.4 \
libopencv-highgui2.4 \
libopencv-imgproc2.4 \
libopencv-legacy2.4 \
libopencv-ml2.4 \
libopencv-nonfree2.4 \
libopencv-objdetect2.4 \
libopencv-ocl2.4 \
libopencv-photo2.4 \
libopencv-stitching2.4 \
libopencv-superres2.4 \
libopencv-video2.4 \

(continues on next page)

Working with Poky and Bitbake 57

https://www.phytec.de/cdocuments/?doc=xoJEEQ#L844e-A5i-MX6ULULLBSPManual-Bluetooth
https://opencv.org/

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

(continued from previous page)

libopencv-videostab2.4 \
"

Then rebuild your image

host:~$ bitbake phytec-qt6demo-image

Tip

Most examples do not work out of the box, because they depend on the GTK graphics library. The BSP
only supports Qt6 .

13.6.19 Add Minimal PHP web runtime with lightpd
This is one example of how to add a small runtime for PHP applications and a web server on your target.
Lighttpd can be used together with the PHP command line tool over cgi. This solution weights only 5.5
MiB of disk storage. It is already preconfigured in meta-ampliphy. Just modify the build configuration to
install it on the image

file conf/local.conf
install lighttpd with php cgi module
IMAGE_INSTALL:append = " lighttpd"

After booting the image, you should find the example web content in /www/pages . For testing php, you
can delete the index.html and replace it with a index.php file

<html>
<head>
<title>PHP-Test</title>

</head>
<body>
<?php phpinfo(); ?>

</body>
</html>

On your host, you can point your browser to the board’s IP, (e.g. 192.168.3.11) and the phpinfo should show
up.

13.7 Common Tasks

13.7.1 Debugging a User Space Application
The phytec-qt6demo-image can be cross-debugged without any change. For cross-debugging, you just have
to match the host sysroot with the image in use. So you need to create a toolchain for your image

host:~$ bitbake -c populate_sdk phytec-qt6demo-image

Additionally, if you want to have full debug and backtrace capabilities for all programs and libraries in the
image, you could add

DEBUG_BUILD = "1"

Working with Poky and Bitbake 58

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

to the conf/local.conf. This is not necessary in all cases. The compiler options will then be switched
from FULL_OPTIMIZATION to DEBUG_OPTIMIZATION. Look at the Poky source code for the default
assignment of DEBUG_OPTIMIZATION.

To start a cross debug session, install the SDK as mentioned previously, source the SDK environment, and
run Qt Creator in the same shell. If you do not use Qt Creator, you can directly call the arm-<..>-gdb
debugger instead which should be in your path after sourcing the environment script.

If you work with Qt Creator, have a look at the appropriate documentation delivered with your product
(either QuickStart or Application Guide) for information on how to set up the toolchain.

When starting the debugger with your userspace application you will get a SIGILL, an illegal instruction
from the libcrypto. Openssl probes for the system capabilities by trapping illegal instructions, which will
trigger GDB. You can ignore this and hit Continue (c command). You can permanently ignore this stop
by adding

handle SIGILL nostop

to your GDB startup script or in the Qt Creator GDB configuration panel. Secondly, you might need to
disable a security feature by adding

set auto-load safe-path /

to the same startup script, which will enable the automatic loading of libraries from any location.

If you need to have native debugging, you might want to install the debug symbols on the target. You can
do this by adding the following line to your conf/local.conf

EXTRA_IMAGE_FEATURES += "dbg-pkgs"

For cross-debugging, this is not required as the debug symbols will be loaded from the host side and the
dbg-pkgs are included in the SDK of your image anyway.

13.7.2 Generating Source Mirrors, working Offline
Modify your site.conf (or local.conf if you do not use a site.conf) as follows

#DL_DIR ?= "" don't set it! It will default to a directory inside /build
SOURCE_MIRROR_URL = "file:///home/share/yocto_downloads/"
INHERIT += "own-mirrors"
BB_GENERATE_MIRROR_TARBALLS = "1"

Now run

host:~$ bitbake --runall=fetch <image>

for all images and for all machines you want to provide sources for. This will create all the necessary tar
archives. We can remove all SCM subfolders, as they are duplicated with the tarballs

host:~$ rm -rf build/download/git2/
etc...

Please consider that we used a local source mirror for generating the dl_dir. Because of that, some archives
will be linked locally.

First, we need to copy all files, resolving symbolic links into the new mirror directory

Working with Poky and Bitbake 59

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

host:~$ rsync -vaL <dl_dir> ${TOPDIR}/../src_mirror/

Now we clean the /build directory by deleting everything except /build/conf/ but including
/build/conf/sanity. We change site.conf as follows

SOURCE_MIRROR_URL = "file://${TOPDIR}/../src_mirror"
INHERIT += "own-mirrors"
BB_NO_NETWORK = "1"
SCONF_VERSION = "1"

The BSP directory can now be compressed with

host:~$ tar cfJ <filename>.tar.xz <folder>

where filename and folder should be the full BSP Name.

13.7.3 Compiling on the Target
To your local.conf add

IMAGE_FEATURES:append = " tools-sdk dev-pkgs"

13.7.4 Different Toolchains
There are several ways to create a toolchain installer in Poky. One option is to run

host:~$ bitbake meta-toolchain

This will generate a toolchain installer in build/deploy/sdk which can be used for cross-compiling of target
applications. However, the installer does not include libraries added to your image, so it is a bare GCC
compiler only. This is suited for bootloader and kernel development.

Another you can run is

host:~$ bitbake -c populate_sdk <your_image>

This will generate a toolchain installer containing all necessary development packages of the software in-
stalled on the root filesystem of the target. This installer can be handed over to the user space application
development team and includes all necessary parts to develop an application. If the image contains the QT
libraries, all of those will be available in the installer too.

The third option is to create the ADT (Application Development Toolkit) installer. It will contain the
cross-toolchain and some tools to aid the software developers, for example, an Eclipse plugin and a QEMU
target simulator.

host:~$ bitbake adt-installer

The ADT is untested for our BSP at the moment.

Using the SDK

After generating the SDK with

host:~$ source sources/poky/oe-init-build-env
host:~$ bitbake -c populate_sdk phytec-qt6demo-image # or another image

Working with Poky and Bitbake 60

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

run the generated binary with

host:~$ deploy/sdk/ampliphy-glibc-x86_64-phytec-qt6demo-image-cortexa9hf-vfp-neon-toolchain-i.
↪→MX6-PD15.3-rc.sh
Enter target directory for SDK (default: /opt/ampliphy/i.MX6-PD15.3-rc):
You are about to install the SDK to "/opt/ampliphy/i.MX6-PD15.3-rc". Proceed[Y/n]?
Extracting SDK...done
Setting it up...done
SDK has been successfully set up and is ready to be used.

You can activate the toolchain for your shell by sourcing the file environment-setup in the toolchain directory

host:~$ source /opt/ampliphy/i.MX6-PD15.3-rc/environment-setup-cortexa9hf-vfp-neon-phytec-linux-
↪→gnueabi

Then the necessary tools like the cross compiler and linker are in your PATH. To compile a simple C program,
use

host:~$ $CC main.c -o main

The environment variable $CC contains the path to the ARM cross compiler and other compiler arguments
needed like -march , -sysroot and –mfloat-abi.

Tip

You cannot compile programs only with the compiler name like

host:~$ arm-phytec-linux-gnueabi-gcc main.c -o main

It will fail in many cases. Always use CC, CFLAGS, LDFLAGS, and so on.

For convenience, the environment-setup exports other environment variables like CXX, LD, SDKTARGET-
SYSROOT.

A simple makefile compiling a C and C++ program may look like this

Makefile
TARGETS=c-program cpp-program

all: $(TARGETS)

c-program: c-program.c
$(CC) $(CFLAGS) $(LDFLAGS) $< -o $@

cpp-program: cpp-program.cpp
$(CXX) $(CXXFLAGS) $(LDFLAGS) $< -o $@

.PHONY: clean
clean:

rm -f $(TARGETS)

To compile for the target, just source the toolchain in your shell before executing make

Working with Poky and Bitbake 61

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

host:~$ make # Compiling with host CC, CXX for host architecture
host:~$ source /opt/ampliphy/i.MX6-PD15.3-rc/environment-setup-cortexa9hf-vfp-neon-phytec-linux-
↪→gnueabi
host:~$ make # Compiling with target CC, CXX for target architecture

If you need to specify additionally included directories in the sysroot of the toolchain, you can use an ‘=’
sign in the -I argument like

-I=/usr/include/SDL

GCC replaces it by the sysroot path (here /opt/ampliphy/i.MX6-PD15.3-rc/sysroots/cortexa9hf-vfp-neon-
phytec-linux-gnueabi/). See the main page of GCC for more information.

Tip

The variables $CFLAGS and $CXXFLAGS contain the compiler debug flag ‘-g’ by default. This includes
debugging information in the binary and making it bigger. Those should be removed from the production
image. If you create a Bitbake recipe, the default behavior is to turn on ‘-g’ too. The debugging symbols
are used in the SDK rootfs to be able to get debugging information when invoking GDB from the host.
Before installing the package to the target rootfs, Bitbake will invoke strip on the program which removes
the debugging symbols. By default, they are not found nor required on the target root filesystem

Using the SDK with GNU Autotools

Yocto SDK is a straightforward tool for a project that uses the GNU Autotools. The traditional compile
steps for the host are usually

host:~$./autogen.sh # maybe not needed
host:~$./configure
host:~$ make
host:~$ make install DESTDIR=$PWD/build/

The commands to compile for the target machine with the Yocto SDK are quite similar. The following
commands assume that the SDK was unpacked to the directory /opt/phytec-ampliphy/i.MX6-PD15.3.0/
(adapt the path as needed)

host:~$ source /opt/phytec-ampliphy/i.MX6-PD15.3.0/environment-setup-cortexa9hf-vfp-neon-phytec-
↪→linux-gnueabi
host:~$./autogen.sh # maybe not needed
host:~$./configure ${CONFIGURE_FLAGS}
host:~$ make
host:~$ make install DESTDIR=$PWD/build/

Refer to the official Yocto documentation for more information: https://docs.yoctoproject.org/4.2.4/
singleindex.html#autotools-based-projects

13.7.5 Working with Kernel Modules
You will come to the point where you either need to set some options for a kernel module or you want to
blacklist a module. Those things are handled by udev and go into *.conf files in

/etc/modprobe.d/*.conf.

Working with Poky and Bitbake 62

https://docs.yoctoproject.org/4.2.4/singleindex.html#autotools-based-projects
https://docs.yoctoproject.org/4.2.4/singleindex.html#autotools-based-projects

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

If you want to specify an option at build time, there are three relevant variables. If you just want to autoload
a module that has no autoload capabilities, add it to

KERNEL_MODULE_AUTOLOAD += "your-module"

either in the kernel recipe or in the global variable scope. If you need to specify options for a module, you
can do so with

KERNEL_MODULE_AUTOLOAD += "your-module"
KERNEL_MODULE_PROBECONF += "your-module"
module_conf_your-module = "options your-module parametername=parametervalue"

if you want to blacklist a module from autoloading, you can do it intuitively with

KERNEL_MODULE_AUTOLOAD += "your-module"
KERNEL_MODULE_PROBECONF += "your-module"
module_conf_your-module = "blacklist your-module"

13.7.6 Working with udev
Udev (Linux dynamic device management) is a system daemon that handles dynamic device management
in /dev. It is controlled by udev rules that are located in /etc/udev/rules.d (sysadmin configuration space)
and /lib/udev/rules.d/ (vendor-provided). Here is an example of an udev rule file

file /etc/udev/rules.d/touchscreen.rules
Create a symlink to any touchscreen input device
SUBSYSTEM=="input", KERNEL=="event[0-9]*", ATTRS{modalias}=="input:*-e0*,3,*a0,1,*18,*",␣
↪→SYMLINK+="input/touchscreen0"
SUBSYSTEM=="input", KERNEL=="event[0-9]*", ATTRS{modalias}=="ads7846", SYMLINK+="input/
↪→touchscreen0"

See https://www.freedesktop.org/software/systemd/man/latest/udev.html for more details about the syn-
tax and usage. To get the list of attributes for a specific device that can be used in an udev rule you can
use the udevadm info tool. It prints all existing attributes of the device node and its parents. The key-value
pairs from the output can be copied and pasted into a rule file. Some examples

target:~$ udevadm info -a /dev/mmcblk0
target:~$ udevadm info -a /dev/v4l-subdev25
target:~$ udevadm info -a -p /sys/class/net/eth0

After changing an udev rule, you have to notify the daemon. Otherwise, your changes are not reflected. Use
the following command

target:~$ udevadm control --reload-rules

While developing udev rules you should monitor the events in order to see when devices are attached or
unattached to the system. Use

target:~$ udevadm monitor

Furthermore, it is very useful to monitor the system log in another shell, especially if the rule executes
external scripts. Execute

target:~$ journalctl -f

Working with Poky and Bitbake 63

https://www.freedesktop.org/software/systemd/man/latest/udev.html

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

Tip

You cannot start daemons or heavy scripts in a RUN attribute. See https://www.freedesktop.org/
software/systemd/man/latest/udev.html#RUN%7Btype%7D .

This can only be used for very short-running foreground tasks. Running an event process for a long
period of time may block all further events for this or a dependent device. Starting daemons or
other long-running processes is not appropriate for udev; the forked processes, detached or not, will
be unconditionally killed after the event handling has finished. You can use the special attribute
ENV{SYSTEMD_WANTS}=”service-name.service” and a systemdservice instead.

See https://unix.stackexchange.com/questions/63232/what-is-the-correct-way-to-write-a-udev-rule-to-stop-a-service-under-systemd.

Working with Poky and Bitbake 64

https://www.freedesktop.org/software/systemd/man/latest/udev.html#RUN%7Btype%7D
https://www.freedesktop.org/software/systemd/man/latest/udev.html#RUN%7Btype%7D
https://unix.stackexchange.com/questions/63232/what-is-the-correct-way-to-write-a-udev-rule-to-stop-a-service-under-systemd

CHAPTER

FOURTEEN

TROUBLESHOOTING

14.1 Setscene Task Warning
This warning occurs when the Yocto cache is in a dirty state.

WARNING: Setscene task X ([...]) failed with exit code '1' - real task

You should avoid canceling the build process or if you have to, press Ctrl-C once and wait until the build
process has stopped. To remove all these warnings just clean the sstate cache and remove the build folders.

host:~$ bitbake phytec-headless-image -c cleansstate && rm -rf tmp deploy/ipk

65

Yocto Reference Manual Mickledore Documentation Rev.: imx8mp-pd24.1.0-nxp-5-g53de543

Troubleshooting 66

CHAPTER

FIFTEEN

YOCTO DOCUMENTATION

The most important piece of documentation for a BSP user is probably the developer manual. https:
//docs.yoctoproject.org/4.2.4/dev-manual/index.html

The chapter about common tasks is a good starting point. https://docs.yoctoproject.org/4.2.4/dev-manual/
layers.html#understanding-and-creating-layers

The complete documentation is available on one single HTML page, which is good for searching for a feature
or a variable name. https://docs.yoctoproject.org/4.2.4/singleindex.html

67

https://docs.yoctoproject.org/4.2.4/dev-manual/index.html
https://docs.yoctoproject.org/4.2.4/dev-manual/index.html
https://docs.yoctoproject.org/4.2.4/dev-manual/layers.html#understanding-and-creating-layers
https://docs.yoctoproject.org/4.2.4/dev-manual/layers.html#understanding-and-creating-layers
https://docs.yoctoproject.org/4.2.4/singleindex.html

	PHYTEC Documentation
	Yocto Introduction
	Core Components
	Vocabulary
	Recipes
	Classes
	Layers
	Machine
	Distribution (Distro)

	Poky
	Bitbake
	Toaster

	Official Documentation
	Compatible Linux Distributions
	PHYTEC BSP Introduction
	BSP Structure
	BSP Management
	phyLinux
	Repo

	BSP Metadata
	Poky
	meta-openembedded
	meta-qt6
	meta-nodejs
	meta-gstreamer1.0
	meta-rauc
	meta-phytec
	meta-ampliphy
	meta-qt6-phytec
	meta-virtualization
	meta-security
	meta-selinux
	meta-browser
	meta-rust
	meta-timesys
	meta-freescale
	meta-freescale-3rdparty
	meta-freescale-distro
	base (fsl-community-bsp-base)
	meta-fsl-bsp-release

	BSP Content

	Build Configuration

	Pre-built Images
	BSP Workspace Installation
	Setting Up the Host
	Git Configuration
	site.conf Setup

	phyLinux Documentation
	Get phyLinux
	Basic Usage
	Initialization
	Advanced Usage

	Using build-container
	Installation
	Available container
	Download/Pull container
	Run container

	Working with Poky and Bitbake
	Start the Build
	Images images
	Accessing the Development States between Releases
	Inspect your Build Configuration
	BSP Features of meta-phytec and meta-ampliphy
	Buildinfo

	BSP Customization
	Disable Qt Demo
	Framebuffer Console
	Tools Provided in the Prebuild Image
	RAM Benchmark

	Add Additional Software for the BSP Image
	Notes about Packages and Recipes

	Add an Additional Layer
	Create your own layer
	Kernel and Bootloader Recipe and Version
	Kernel and Bootloader Configuration
	Add a Configuration Fragment to a Recipe
	Add a Complete Default Configuration (defconfig) to a Recipe

	Patch the Kernel or Bootloader with devtool
	Patch the Kernel or Bootloader using the “Temporary Method”
	Working with the Kernel and Bootloader using SRC_URI in local.conf
	Add Existing Software with “Sustainable Method”
	Add Linux Firmware Files to the Root Filesystem
	Change the u-boot Environment via bbappend Files
	Change the barebox Environment via bbappend Files
	Debugging the Environment
	Changing the Environment (depending on Machines)
	Upgrading the barebox Environment from Previous BSP Releases

	Changing the Network Configuration
	Changing the Wireless Network Configuration
	Connecting to a WLAN Network
	Creating a WLAN Access Point
	phyCORE-i.MX 6UL/ULL Bluetooth

	Add OpenCV Libraries and Examples
	Add Minimal PHP web runtime with lightpd

	Common Tasks
	Debugging a User Space Application
	Generating Source Mirrors, working Offline
	Compiling on the Target
	Different Toolchains
	Using the SDK
	Using the SDK with GNU Autotools

	Working with Kernel Modules
	Working with udev

	Troubleshooting
	Setscene Task Warning

	Yocto Documentation

