RAUC Update & Device Management
Manual Mickledore

PHYTEC Messtechnik GmbH

Dec 04, 2024

CONTENTS

System Configuration 3
1.1 RAUC BSP Example Setup o oo 3
Design Considerations 5
Initial Setup 7
3.1 Flash Storage. e e e 7
3.2 Bootloader e 8
Creating RAUC Bundles 11
Updating with RAUC 13
5.1 Changing the Active Boot Slot 15
Switching RAUC Keyrings 17
6.1 Keyring Switching Process oL L e 17
Use Case Examples 19
7.1 Automatic Updates from USB Flash Drive with RAUC 19
7.2 Security Measurement: Downgrade Barrier o oo 20
7.3 Streaming Bundles over HT'TP 0 21
Reference 23
8.1 Boot Logic Implementation L 23

8.2 eMMOC Boot Partitions e 26

RAUC Update & Device Management Manual Mickledore Doc-rev.: imx8mp-pd24.1.0-nxp-12-gb2392f3

RAUC Update & Device Management Manual

Document Title RAUC Update & Device Management Manual Mickledore

Document Type RAUC Update & Device Management Manual

Release Date XXXX/XX/XX

Is Branch of RAUC Update & Device Management Manual
Compatible BSPs BSP Release Type BSP Release Date BSP Status
BSP-Yocto-NXP-i.MX93-PD24.1.0 Major 05.02.2024 released
BSP-Yocto-NXP-i.MX93-PD24.1.1 Minor 08.05.2024 released

This manual was tested using the Yocto version Mickledore.

PHYTEC’s Yocto distribution Ampliphy (former Yogurt) supports the RAUC (Robust Auto-Update Con-
troller) mechanism. RAUC controls the procedure of updating a device with new firmware. This includes
updating the Linux kernel, Device Tree, and root filesystem. For eMMC devices only, it can also update the
bootloader.

This manual describes how RAUC is used and implemented on various PHYTEC platforms. Note, that
different modules use different bootloaders and flash storage devices, which affects the way things are handled
by RAUC. Make sure to read the correct sections fitting your platform.

Note

This manual contains machine-specific paths and variable contents. Make sure you are using the correct
machine and device names for your application when executing any commands.

CONTENTS 1

https://rauc.readthedocs.io/en/latest/

RAUC Update & Device Management Manual Mickledore Doc-rev.: imx8mp-pd24.1.0-nxp-12-gb2392f3

CONTENTS 2

CHAPTER
ONE

SYSTEM CONFIGURATION

RAUC can be used with both eMMC and NAND flash storage. Using the distro ampliphy-rauc or
ampliphy-vendor-rauc, it is enabled by default and requires no additional setup to get started. RAUC
can be used in different update scenarios. As an example, we configured the BSP to use an A/B setup to
have a completely redundant system (including the bootloader on eMMC devices). Note, that there is an
additional partition named config storing persistent configuration data not being changed when updating.

eMMC NAND

eMMC Boot Partitions

Bootloader
Bootloader Bootloader

config

eMMC User Area + Persistent Configuration Files

Bootloader
System A System B

kernel@ kerneli

» Linux Kernel - Linux Kernel

config
* Persistent Configuration Files

System A System B oftreed oftreel
+ Device Tree « Device Tree

boot@ boot1

» Linux Kernel » Linux Kernel

- Device Tree » Device Tree root@ rootil

* Root Filesystem * Root Filesystem

rootfso rootfsi
* Root Filesystem * Root Filesystem

1.1 RAUC BSP Example Setup

The partition layout is defined in the /etc/rauc/system.conf file. As an example, this is what it looks like
for i.MX 8M Mini with eMMC flash storage:

RAUC Update & Device Management Manual Mickledore

Doc-rev.:

imx8mp-pd24.1.0-nxp-12-gb2392f3

Listing 1: /etc/rauc/system.conf

[system]
compatible=phyboard-polis-imx8mm-4
bootloader=uboot
mountprefix=/mnt/rauc

[handlers]
pre-install=/usr/lib/rauc/rauc-pre-install.sh
post-install=/usr/lib/rauc/rauc-post-install.sh

[keyring]
path=mainca-rsa.crt.pem

[slot.bootloader.0]
device=/dev/mmcblk2
type=boot-emmc

System A
[slot.rootfs.0]
device=/dev/mmcblk2p5
type=ext4
bootname=system0

[slot.boot.0]
device=/dev/mmcblk2pl
type=vfat
parent=rootfs.0

System B
[slot.rootfs.1]
device=/dev/mmcblk2p6
type=ext4
bootname=systeml

[slot.boot.1]
device=/dev/mmcblk2p2
type=vfat
parent=rootfs.1

Note, that the devices specified in the slots are different depending on the selected machine.

Warning

Switching RAUC Keyrings for more information.

Updates with RAUC use an OpenSSL certificate to verify the validity of an image. The BSP includes a
certificate that can be used for development. In a productive system, however, it is highly recommended
to use a self-created key and certificate. If you need to change the keyring on an existing device, see

System Configuration

CHAPTER
TWO

DESIGN CONSIDERATIONS

In order to prevent the system from locking up, it may be a good idea to utilize a hardware watchdog. In
case the Linux Kernel does not boot or another catastrophic event occurs that prevents the system from
operating normally, the hardware watchdog then resets the system. By default, the hardware watchdog is
disabled. To enable it, refer to the corresponding BSP manual that fits your SoM.

Other important design considerations, as well as a checklist, can be found in the official RAUC documen-
tation: https://rauc.readthedocs.io/en/latest/checklist.html

https://rauc.readthedocs.io/en/latest/checklist.html

RAUC Update & Device Management Manual Mickledore Doc-rev.: imx8mp-pd24.1.0-nxp-12-gb2392f3

Design Considerations 6

CHAPTER

THREE

INITIAL SETUP

To use RAUC, the flash device needs to be written with a complete Linux system and bootloader. The
preferred method to do this is using the included tool partup.

3.1 Flash Storage

To flash the device with the correct partitions/volumes, use a partup package built with the ampliphy-rauc
or ampliphy-vendor-rauc distribution. Prebuilt partup packages can be found in the BSP release. It is also
possible to build an image with this distribution yourself using Yocto. Separate build directories are created,
storing the images and packages for the RAUC system. Initialize the build directory with the OE init script:

[host:~$ TEMPLATECONF=. ./meta-phytec/conf/templates/default source sources/poky/oe-init-build-env }

Change the distribution to ampliphy-rauc (for i MX6, AM6x, . MX8 mainline BSP) or ampliphy-vendor-rauc
(for i.MX8, i.MX9 vendor BSP):

Listing 1: build/conf/local.conf

[DISTRO ?= "ampliphy-rauc"]

Any image built with this distro now includes a full A/B system. Build the image as usual:

[host:~$ bitbake phytec-headless-image]

The resulting partup package is stored in the deploy-ampliphy-vendor-rauc directory, e.g.:

—1imx93-2.partup

deploy-ampliphy-vendor-rauc/images/phyboard-segin-imx93-2/phytec-headless-image-phyboard-segin- ’

This partup package contains all the necessary data and configuration to flash an eMMC. Partup can be
obtained from its release page. Also, see its README for detailed installation instructions. Partup is
already installed in our Ampliphy images, phytec-headless-image and can be directly used e.g. from an SD
card.

Note

To flash the initial RAUC system, a booted non-RAUC system is needed first on a different flash device.
E.g. you could boot a regular phytec-headless-image image with distro ampliphy from an SD card.

https://partup.readthedocs.io/en/latest/
https://github.com/phytec/partup
https://github.com/phytec/partup/releases
https://github.com/phytec/partup#installation

RAUC Update & Device Management Manual Mickledore Doc-rev.: imx8mp-pd24.1.0-nxp-12-gb2392f3

3.1.1 eMMC

While running a non-RAUC system from an SD card on the target, copy the .partup package built with
distro ampliphy-rauc or ampliphy-vendor-rauc to the running target first:

[host:~$ scp phytec-headless-image-phyboard-segin-imx93-2.partup 192.168.3.11:/root]

Then install the partup package to the eMMC:

[target:~$ partup install phytec-headless-image-phyboard-segin-imx93-2.partup /dev/mmcblk0]

Now the target can boot the flashed A/B system.

3.1.2 NAND

Note

There are scripts provided with the bootloader barebox that previously were used to initialize NAND
flash with an A/B system: rauc_init_nand, rauc_flash_nand_from_tftp and rauc_flash_nand_from mmc.
These scripts are deprecated. It is advised to use the script rauc-flash-nand provided in the Linux
environment with PHYTEC’s distribution Ampliphy.

With raw NAND flash the kernel, device tree, and root filesystem are written individually. Initialize the
NAND flash with the correct volumes from a Linux on the target:

[target:~$ rauc-flash-nand -k /path/to/zImage -d /path/to/oftree -r /path/to/root.ubifs]

The initialization script will automatically utilize all available space of NAND flash. The NAND device is
also determined automatically by finding the device root in /proc/mtd.

On i.MX6 and i.MX6UL devices with barebox, use bbu (barebox update) to flash the bootloader:

[target:~$ bbu.sh -f /path/to/barebox.bin]

The A/B system on NAND Flash is now ready to be booted.

3.2 Bootloader

3.2.1 Booting the A/B System by Default

Booting the A/B system is done mostly automatically by the bootloader since the Yocto release hardknott.
For devices with eMMC flash storage, the corresponding setting is written into the bootloader environment
during the building of the BSP. In particular, if the distribution ampliphy-rauc or ampliphy-vendor-rauc
is used, as described previously, the bootloader should automatically start the A/B system and have the
variables set for RAUC accordingly.

This automatic setting can be manually changed by setting one variable in the bootloader. The procedure
is described in more detail in the following chapters for U-Boot and barebox.

3.2.2 U-Boot

After a successful boot into a Linux environment, this command is used to view the available parameters:

[target:~$ fw_printenv]

Initial Setup 8

RAUC Update & Device Management Manual Mickledore Doc-rev.: imx8mp-pd24.1.0-nxp-12-gb2392f3

You may see this parameter along with others in the output:

[doraucboot=1 J

To manually disable or enable booting the A/B system with RAUC, set this variable to 0 or 1:

[target:~$ fw_setenv doraucboot 1]

This parameter can also be edited in U-Boot. Restart your board and hit any key to stop the automatic
boot. The environment variables can now be viewed:

[u-boot=> printenv]

and set:

u-boot=> setenv dorauchoot 1
u-boot=> saveenv

3.2.3 Barebox

In barebox, the system to be booted can be selected directly by its name. To boot the A/B system, including
RAUC, bootchooser is used. To boot e.g. a regular SD card without RAUC use mmc instead, or nand for
NAND devices:

[barebox$ nv boot.default=bootchooser J

Initial Setup 9

RAUC Update & Device Management Manual Mickledore Doc-rev.: imx8mp-pd24.1.0-nxp-12-gb2392f3

Initial Setup 10

CHAPTER
FOUR

CREATING RAUC BUNDLES

To update your system with RAUC, a RAUC bundle (. raucb) needs to be created. It contains all required
images and scripts for the update and a RAUC manifest.raucm that describes the content of the bundle for
the RAUC update on the target. The BSP includes a Yocto target that lets you build a RAUC bundle from
your Yocto build.

To create the bundle with Yocto, run the following in build/ with the distribution ampliphy-rauc or
ampliphy-vendor-rauc set up, as described previously:

[host:~$ bitbake phytec-headless-bundle

This results in the creation of a .raucb bundle file in deploy/images/<MACHINE>/ which can be used for
updating the system as described later. There is no need to create a manifest.raucm manually as it is
created automatically during the build of the bundle. As a reference, the created manifest would look
something like this:

Listing 1: manifest.raucm

[updatel]

compatible=phyboard-polis-imx8mm-3

version=r0

description=PHYTEC rauc bundle based on BSP-Yocto-FSL-i.MX8MM-PD20.1.0
build=20200624074335

[image.rootfs]
sha256=cc3f65cd1c1993951d7a39bdb7b7d723617ac4646018b640cd8d1622ad6edcl?
$1ze=99942000
filename=phytec-headless-image-phyboard-polis-imx8mm-3.tar.gz

[image.boot]
sha256=bafe46679af8c6292dba22b9d402e3119ef78c6f8b458bcb6993326060de3aas
size=12410534

filename=boot.tar.gz.img

For more information about the manifest format, see https://rauc.readthedocs.io/en/latest/reference. html#
manifest.

11

https://rauc.readthedocs.io/en/latest/reference.html#manifest
https://rauc.readthedocs.io/en/latest/reference.html#manifest

RAUC Update & Device Management Manual Mickledore Doc-rev.: imx8mp-pd24.1.0-nxp-12-gb2392f3

Creating RAUC Bundles 12

CHAPTER
FIVE

UPDATING WITH RAUC

To update the target system with RAUC, the RAUC bundle file previously created first needs to be copied
to the board or to a memory device that can be mounted in Linux. One way is to copy the bundle file with
scp, but this requires enough space left on the board’s filesystem. To do this, boot the target board to Linux
and connect it via Ethernet to your host PC.

On the host, run:

[host:~$ scp phytec-headless-bundle-phyboard-polis-imx8mm-3.raucb root@192.168.3.11:/tmp/

On the target, the bundle can be verified:

[target:~$ rauc info /tmp/phytec-headless-bundle-phyboard-polis-imx8mm-3. raucb

and the output should look similar to this:

rauc-Message: 12:52:49.821: Reading bundle: /phytec-headless-bundle-phyboard-polis-imx8mm-3.raucb
rauc-Message: 12:52:49.830: Verifying bundle...

Compatible: 'phyboard-polis-imx8mm-3"

Version: 'ro!

Description: '"PHYTEC rauc bundle based on BSP-Yocto-FSL-i.MX8MM-PD20.1.0'
Build: '20200624073212"

Hooks: v

2 Images:

(1) phytec-headless-image-phyboard-polis-imx8mm-3.tar.gz

Slotclass: rootfs
Checksum: 342f67f7678d7af3f77710e1b68979f638c7f4d20393f6ffd0c36beff2789070

Size: 180407809
Hooks:
(2) boot.tar.gz.img

Slotclass: boot
Checksum: 8c84465b4715ccl42eca2785feal09804bd970755142c9ff57e08c791e2b71128
Size: 12411786
Hooks:
0 Files

Certificate Chain:
0 Subject: /0=PHYTEC Messtechnik GmbH/CN=PHYTEC Messtechnik GmbH Development-1
Issuer: /0=PHYTEC Messtechnik GmbH/CN=PHYTEC Messtechnik GmbH PHYTEC BSP CA Development
SPKI sha256:
—E2:47:5F:32:05:37:04:D4:8C:48:8D:A6:74:A8:21:2E:97:41:EE:88:74:B5:F4:65:75:97:76:1D:FF:1D:7B:EE
Not Before: Jan 1 00:00:00 1970 GMT

(continues on next page)

13

RAUC Update & Device Management Manual Mickledore Doc-rev.: imx8mp-pd24.1.0-nxp-12-gb2392f3

(continued from previous page)

Not After: Dec 31 23:59:59 9999 GMT
1 Subject: /0=PHYTEC Messtechnik GmbH/CN=PHYTEC Messtechnik GmbH PHYTEC BSP CA Development
Issuer: /0=PHYTEC Messtechnik GmbH/CN=PHYTEC Messtechnik GmbH PHYTEC BSP CA Development
SPKI sha256:,
—AB:5C:DB:C6:0A:ED:A4:48:B9:40:AC:B1:48:06:AA:BA:92:09:83:8C:DC:6F:E1:5F:B6:FB:0C:39:3C:3B:E6:A2
Not Before: Jan 1 00:00:00 1970 GMT
Not After: Dec 31 23:59:59 9999 GMT

To check the current state of the system, run:

[target:~$ rauc status

and get output similar to this:

=== System Info ===

Compatible: phyboard-segin-imx6ul-6
Variant:

Booted from: rootfs.0 (systemO)

=== Bootloader ===
Activated: rootfs.0 (system0)

=== Slot States ===
o [rootfs.1l] (/dev/ubi® 6, ubifs, inactive)
bootname: systeml
boot status: good
[dtb.1] (/dev/ubi® 3, ubivol, inactive)
[kernel.1] (/dev/ubi® 2, ubivol, inactive)

x [rootfs.0] (/dev/ubi® 5, ubifs, booted)
bootname: system0
boot status: good
[kernel.0] (/dev/ubi® 0, ubivol, active)
[dtb.0] (/dev/ubi@® 1, ubivol, active)

To update the currently inactive system with the downloaded bundle, run:

[target:~$ rauc install /tmp/phytec-headless-bundle-phyboard-polis-imx8mm-3. rauch

and reboot afterward:

[target:~$ reboot

With the success of the update, RAUC automatically switches the active system to the newly updated
system. Now during reboot, RAUC counts the boot attempts of the kernel and if it fails more often than
specified in the state framework of the system, RAUC switches back to the old system and marks the new
system as bad. If the boot attempt to the kernel is successful, the new system is marked as good and the
old system can now be updated with the same instructions. After two successful rauc install and reboot,
both systems are updated.

Tip

When you update from a USB stick, make sure to remove the stick after a successful update before

Updating with RAUC 14

RAUC Update & Device Management Manual Mickledore Doc-rev.: imx8mp-pd24.1.0-nxp-12-gb2392f3

rebooting. If not, an automatic update will be started after each boot. This is due to the Automatic
Update from USB Flash Drive with RAUC you can find below.

5.1 Changing the Active Boot Slot

It is possible to switch the active system manually:

[target:~$ rauc status mark-active other

After a reboot, the target now starts from the other system.

Updating with RAUC 15

RAUC Update & Device Management Manual Mickledore Doc-rev.: imx8mp-pd24.1.0-nxp-12-gb2392f3

Updating with RAUC 16

CHAPTER
SIX

SWITCHING RAUC KEYRINGS

PHYTEC’s distribution comes with keys and certificates used for development and demonstration purposes
only. To change to a different PKI when devices are already rolled out, RAUC’s keyring must be changed.
This chapter describes the full procedure from a development state to a production state. Keep in mind,
that it is always a better idea to roll out your devices with a production keyring in the first place, instead
of relying on a development one for too long. The following diagram shows the general process of switching
keyrings for RAUC:

RAUC Bundle RAUC Bundle

signed by "development”

signed by "production”

"production” CA keyring in rootfs

"production” CA keyring in rootfs

install to system B

install to system A

development System A reboot > System B production

state state

"development” CA keyring in rootfs "production” CA keyring in rootfs

6.1 Keyring Switching Process

Create new certificates and keys for your own PKI. See our security manual for a detailed description on how
to create a custom PKI. For this document, we refer to this newly created PKI as “production”, as opposed
to the existing “development” keys.

Move the generated keys and certificates, to your main Yocto build directory root, alongside with build/
and sources/.

Warning

Be careful where you store the private keys! These should in no way be made publicly available. E.g.
do not store the private keys in a public Git repository. Otherwise, unauthorized entities could create
RAUC bundles that can be installed on your target system!

17

RAUC Update & Device Management Manual Mickledore Doc-rev.: imx8mp-pd24.1.0-nxp-12-gb2392f3

Now, a RAUC bundle must be created that contains the new “production” CA keyring in its root filesystem
but is still signed by the “development” CA. With this, the system is converted from a “development” system
to a “production” system. To achieve this, exchange the file ca.cert.penm installed by the RAUC recipe in
the Yocto sources. Create a file rauc_%.bbappend in your own Yocto layer:

Listing 1: recipes-core/rauc/rauc_ %.bbappend

FILESEXTRAPATHS prepend := "${THISDIR}/files:"

RAUC_KEYRING FILE = "${CERT PATH}/rauc-customer/ca.cert.pem"

Build the same RAUC bundle as before, now with the exchanged keyring:

host:~$ TEMPLATECONF=../meta-phytec/conf/templates/default source source/poky/oe-init-build-env
host:~$ bitbake phytec-headless-bundle # Build the desired RAUC bundle

Install the resulting RAUC bundle as usual. The target now has the image with the “production” keyring
installed in its other slot (“System B” in the figure above). Reboot to start that system.

All future RAUC bundles for the “production” system must now also be signed by the “production” CA.
For this, change the key and certificate to your newly generated “production” ones in the bundle recipe:

Listing 2: recipes-images/bundles/customer-headless-bundle.bb

require phytec-base-bundle.inc
RAUC SLOT rootfs ?= "phytec-headless-image"

RAUC KEY FILE = "${CERT PATH}/rauc-customer/private/production-1.key.pem"
RAUC CERT FILE = "${CERT PATH/rauc-customer/production-1.cert.pem"

RAUC_INTERMEDIATE CERT_FILE = ""

Rebuild the RAUC bundle:

[host:~$ bitbake customer-headless-bundle J

These and any future bundles are now ready to be installed on your “production” target system and have
been fully migrated away from the “development” system. This also means that now only bundles signed by
the “production” CA can be installed on the target (and e.g. “development” bundles cannot).

Switching RAUC Keyrings 18

CHAPTER
SEVEN

USE CASE EXAMPLES

7.1 Automatic Updates from USB Flash Drive with RAUC

One of the most prominent use cases for RAUC might be an automatic update system from a USB flash
drive. This use case is implemented in the BSP as a reference example. We combine only standard Linux
mechanisms with RAUC to build the system. The kernel notifies udev when a device gets plugged into the
USB port. We use a custom udev rule to trigger a systemd service when this event happens.

Listing 1: 10-update-usb.rules

KERNEL!="sd[a-z][0-9]", GOTO="media by label auto mount end"

Trigger systemd service
ACTION=="add", TAG+="systemd", ENV{SYSTEMD WANTS}="update-usb@%sk.service"

Exit
LABEL="media by label auto mount end"

The service automatically mounts the USB flash drive and notifies the application.

Listing 2: update-usb@.service

[Unit]

Description=usb media RAUC service
After=multi-user.target
Requires=rauc.service

[Servicel

Type=oneshot

Environment=DBUS SESSION BUS ADDRESS=unix:path=/run/dbus/system bus socket
ExecStartPre=/bin/mkdir -p /media/%I

ExecStartPre=/bin/mount -t auto /dev/%I /media/%I
ExecStart=/usr/bin/update usb.sh %I

ExecStop=/bin/umount -1 /media/%i

ExecStopPost=-/bin/rmdir /media/%I

In our reference implementation, we simply use a shell script for the application logic.

Listing 3: update_ usb.sh

#!/bin/sh

(continues on next page)

19

RAUC Update & Device Management Manual Mickledore Doc-rev.: imx8mp-pd24.1.0-nxp-12-gb2392f3

(continued from previous page)

MOUNT=/media/$1
NUMRAUCM=$(find ${MOUNT}/*.raucb -maxdepth 0 | wc -1)

["$NUMRAUCM" -eq 0] && echo "${MOUNT}*.raucb not found" && exit
["$NUMRAUCM" -ne 1] && echo "more than one ${MOUNT}/*.raucb" && exit

rauc install $MOUNT/*.rauch
if ["$?" -ne 0]; then
echo "Failed to install RAUC bundle."
else
echo "Update successful."
fi
exit $7?

The update logic can be integrated into an application using the systemd D-Bus API. RAUC does not need
to be called by its command-line interface but can be integrated with D-Bus.

Tip

RAUC features a D-Bus API interface (see https://rauc.readthedocs.io/en/latest/using.html#
using-the-d-bus-api).

7.2 Security Measurement: Downgrade Barrier

As a second reference example, we will implement a security mechanism: a downgrade barrier. When you
detect a security vulnerability on your system, you will fix it and update your system. The systems with the
new software will now be secure again. If an attacker gets a hold of the old software update bundle, which
still has a valid signature, the attacker might have the possibility to install the old software and still take
advantage of the previously fixed security vulnerability. To prevent this from happening, you could revoke
the updated certificate for every single update and create a new one. This might be difficult to handle,
depending on the environment. A simpler solution would be to allow updates only in one direction using a
version check.

Listing 4: rauc_ downgrade__ barrier.sh

#!/bin/sh

VERSION FILE=/etc/rauc/downgrade barrier version
MANIFEST FILE=${RAUC_UPDATE_SOURCE}/manifest.raucm

[' -f ${VERSION_FILE}] && exit 1

[! -f ${MANIFEST FILE}] && exit 2

VERSION="cat ${VERSION_FILE} | cut -d 'r' -f 2°

BUNDLE_VERSION="grep "version" -rI ${MANIFEST FILE} | cut -d 'r' -f 3°

check from empty or unset variables
[-z "${VERSION}"] && exit 3
[-z "${BUNDLE_VERSION}"] && exit 4

(continues on next page)

Use Case Examples 20

https://rauc.readthedocs.io/en/latest/using.html#using-the-d-bus-api
https://rauc.readthedocs.io/en/latest/using.html#using-the-d-bus-api

RAUC Update & Device Management Manual Mickledore Doc-rev.: imx8mp-pd24.1.0-nxp-12-gb2392f3

(continued from previous page)

developer mode, allow all updates if version is r0
#[${VERSION} -eq 0] && exit 0

downgrade barrier
if [${VERSION} -gt ${BUNDLE_VERSION} 1; then
echo "Downgrade barrier blocked rauc update! CODE5\n"
else
exit 0
fi
exit 5

The script is installed on the target but it is not activated. You need to remove the developer mode line in
the script to activate it.

7.3 Streaming Bundles over HTTP

Instead of copying the bundle to the device, the bundle can be streamed over HT'TP. Using bundle streaming
has the advantage of not requiring local storage on the target. A simple approach to this is running NGINX
inside a Docker container. The following example shows how to implement a minimal download server
enabling HTTP range requests to support this feature.

Create a Dockerfile with the following content:

Listing 5: Dockerfile

FROM nginx

COPY bundles /bundles
COPY nginx.conf /etc/nginx/nginx.conf

Configure NGINX to enable HTTP range requests and point it to the bundle file.

Listing 6: nginx.conf

events {}
http {
server {
proxy force ranges on;

location / {
root /bundles;

Place a bundle in the bundles sub-directory. The folder structure looks like the following after creating all
configuration files:

user@host:rauc-bundle-streaming$ find

./bundles
./bundles/phytec-headless-bundle-phyboard-polis-imx8mn-1.rauch

(continues on next page)

Use Case Examples 21

RAUC Update & Device Management Manual Mickledore Doc-rev.: imx8mp-pd24.1.0-nxp-12-gb2392f3

(continued from previous page)

./nginx.conf
./Dockerfile

Build and run the docker container on the host system:

host:~$ sudo docker build -t rauc-bundle-streaming .
host:~$ sudo docker run --name bundles -p 80:80 -d rauc-bundle-streaming

Install the bundle on the currently inactive target partitions:

[target:~$ rauc install http://192.168.3.10/phytec-headless-bundle-phyboard-polis-imx8mn-1.raucb]

Note

After the update finishes the target may display the following error which has no impact on the success
of the update:

[7416.340413] block nbdO: Send disconnect failed -32

‘[7416.336609] block nbd0: NBD DISCONNECT ’

Use Case Examples 22

CHAPTER

EIGHT

REFERENCE

8.1 Boot Logic Implementation

Tip

The implementation details described in this chapter serve as a reference guide. PHYTEC BSPs that
have RAUC support include these by default and the changes are already incorporated.

8.1.1 U-Boot Environment Variables

For U-Boot, the boot logic that selects the correct partitions to boot from is implemented in its environment.
As a reference, these are the most important U-Boot variables that are used for the A/B system with RAUC:

Name Function

BOOT_ORDER Contains a space-separated list of boot targets in the order they should be tried. This
parameter is automatically set by RAUC.

BOOT__<slot>_ Contains the number of remaining boot attempts to perform for the respective slot.
This parameter is automatically set by RAUC.

raucinit Contains the boot logic that sets the partitions so the correct system is loaded.
doraucboot Enables booting the A /B system if set to 1 and disables it if set to 0.

raucargs Sets the Kernel bootargs like console, root, and RAUC slot.

raucrootpart Sets the root filesystem partitions of the device.

rauchootpart Sets the boot partitions of the device.

These environment variables are defined in include/environment/phytec/rauc.env in the u-boot source code.

Note

A change in the partition layout, e.g. when using an additional data partition, may require changing
the variables raucrootpart and raucbootpart. Make sure to rebuild your image with the new bootloader
environment after you have made the appropriate changes.

8.1.2 Barebox Bootchooser Framework

For the barebox, the boot logic that selects the correct partitions to boot from is implemented using the
bootchooser and state framework. See the barebox documentation for detailed information about these:
Barebox Bootchooser Framework, Barebox State Framework.

23

https://www.barebox.org/doc/latest/user/bootchooser.html
https://www.barebox.org/doc/latest/user/state.html

RAUC Update & Device Management Manual Mickledore Doc-rev.: imx8mp-pd24.1.0-nxp-12-gb2392f3

First, the state framework configuration needs to be added to the barebox device tree. Check out the
Customizing the BSP chapter in the Yocto reference manual. The state framework configuration is already
included with our BSP for the supported SoC and can be directly included in the main barebox device tree.
E.g. for i.MX6 based module:

[#include "imx6qdl-phytec-state.dtsi"]

Afterward, rebuild the image and flash the new bootloader.

Warning

Be aware that by adding the state framework configuration, the first 160 bytes of the EEPROM are
occupied and can no longer be used for user-specific purposes.

The following device tree snippet shows an example of the state framework configuration used with the BSP.
As can be seen, the EEPROM is used as a backend for the state information:

/ {
aliases {
state = &state;

};

state: imx6qdl phytec boot state {
magic = <0x883b86a6>;
compatible = "barebox,state";
backend-type = "raw";
backend = <&backend update eeprom>;
backend-stridesize = <54>;

#address-cells = <1>;
#size-cells = <1>;
bootstate {
#address-cells = <1>;
#size-cells = <1>;
last chosen {
reg = <0x0 0x4>;
type = "uint32";
I3
systemd {
#address-cells = <1>;
#size-cells = <1>;
remaining attempts {
reg = <0x4 0x4>;
type = "uint32";
default = <3>;
+i
priority {
reg = <0x8 0x4>;
type = "uint32";
default = <21>;
+i
ok {

(continues on next page)

Reference 24

RAUC Update & Device Management Manual Mickledore Doc-rev.: imx8mp-pd24.1.0-nxp-12-gb2392f3

(continued from previous page)
reg = <0xc 0x4>;
type = "uint32";
default = <0>;

1
};
systeml {
#address-cells = <1>;
#size-cells = <1>;
remaining attempts {
reg = <0x10 0x4>;
type = "uint32";
default = <3>;
+
priority {
reg = <0x14 0x4>;
type = "uint32";
default = <20>;
}
ok {
reg = <0x18 0x4>;
type = "uint32";
default = <0>;
}i
I8
hi
1
};
&eeprom {
status = "okay";
partitions {
compatible = "fixed-partitions";
#size-cells = <1>;
#address-cells = <1>;
backend update eeprom: state@® {
reg = <0x0 0x100>;
label = "update-eeprom";
}i
}i
g

To be able to boot from two systems alternately, the bootchooser needs to be aware of the state framework
configuration. For each system, a boot script is required. For a system with NAND flash, the boot script of
the first system may look like the following:

Listing 1: /env/boot/system0

#!/bin/sh
[-e /env/config-expansions] && /env/config-expansions

[! -e /dev/nandO.root.ubi] && ubiattach /dev/nand0@.root

(continues on next page)

Reference 25

RAUC Update & Device Management Manual Mickledore

Doc-rev.: imx8mp-pd24.1.0-nxp-12-gb2392f3

global.bootm.image="/dev/nand0.root.ubi.kernelo"
global.bootm.oftree="/dev/nand@.root.ubi.oftree0d"
global.linux.bootargs.dyn.root="root=ubi@: root® ubi.mtd=root rootfstype=ubifs"

(continued from previous page)

The second boot script has the same structure but uses the partitions containing the second system. Machines
with eMMC flash use similar boot scripts, albeit the mounting and boot arguments look different.

Run the following commands to create the required bootchooser non-volatile environment variables:

barebox$ nv
barebox$ nv
barebox$ nv
barebox$ nv

bootchooser.state prefix=state.bootstate
bootchooser.system0.boot=systemO
bootchooser.systeml.boot=systeml
bootchooser.targets="systemd systeml"

8.2 eMMC Boot Partitions

With eMMC flash storage it is possible to use the dedicated boot partitions for redundantly storing the

bootloader.

By default, bundles built with our BSP (e.g. phytec-headless-bundle) contain the bootloader for updating
eMMC boot partitions accordingly.

Note, that the U-Boot environment still resides in the user area before the first partition. The user area also
still contains the bootloader which the image first shipped during its initialization process.

To manually write the bootloader to the eMMC boot partitions, first disable the write protection:

target:~$ echo 0 > /sys/block/mmcblk2boot0/force ro
target:~$ echo 0 > /sys/block/mmcblk2bootl/force ro

Write the bootloader to the eMMC boot partitions:

target:~$ dd if=imx-boot of=/dev/mmcblk2boot0® bs=1k seek=33
target:~$ dd if=imx-boot of=/dev/mmcblk2bootl bs=1k seek=33

This example is valid for the i.MX 8M Mini SoC. Note, that other SoCs may have different bootloader
files and require different offsets where the bootloader is expected, specified by the seek parameter. See the
following table for the different offsets being required by each SoC:

SoC Offset User Offset Boot Parti- eMMC De- Bootloader
Area tion vice
iMX 6 1 kiB 0 kiB /dev/mmcblk. barebox.bin
i.MX 6UL 1 kiB 0 kiB /dev/mmcblk barebox.bin
i.MX 8M 33 kiB 33 kiB /dev/mmcblk imx-boot
i.MX 8M Mini 33 kiB 33 kiB /dev/mmcblk imx-boot
iMX 8M Nano 32 kiB 0 kiB /dev/mmcblk imx-boot
iMX 8M Plus 32 kiB 0 kiB /dev/mmeblk imx-boot
i.MX 93 32 kiB 0 kiB /dev/mmcblk imx-boot
AM62x AM62Ax N/A 0 kiB 512 kiB 2560 /dev/mmcblk tiboot3.bin tispl.bin u-
AM64x kiB boot.img
Reference 26

RAUC Update & Device Management Manual Mickledore Doc-rev.: imx8mp-pd24.1.0-nxp-12-gb2392f3

8.2.1 Bootloader Offsets

Note that the offset is different, depending on whether the bootloader resides in the user area or the boot
partitions of the eMMC.

After a bootloader has been written to the eMMC boot partitions, booting from these can be enabled by
using the following command:

[target:~$ mmc bootpart enable 1 0 /dev/mmcblk2 J

This also means that only the bootloaders written in the eMMC boot partitions are used. The bootloader
in the user area is not used anymore. These steps are also executed by RAUC internally when updating the
target system with a bundle.

To disable booting from the eMMC boot partitions simply enter the following command:

[target:~$ mmc bootpart enable 0 0 /dev/mmcblk2]

After this command, the eMMC user area is used to provide the bootloader.

When using U-Boot, a similar command is also available in the bootloader:

u-boot=> mmc partconf 2 0 0 0 # disable
u-boot=> mmc partconf 2 0 1 0 # enable

Reference 27

	System Configuration
	RAUC BSP Example Setup

	Design Considerations
	Initial Setup
	Flash Storage
	eMMC
	NAND

	Bootloader
	Booting the A/B System by Default
	U-Boot
	Barebox

	Creating RAUC Bundles
	Updating with RAUC
	Changing the Active Boot Slot

	Switching RAUC Keyrings
	Keyring Switching Process

	Use Case Examples
	Automatic Updates from USB Flash Drive with RAUC
	Security Measurement: Downgrade Barrier
	Streaming Bundles over HTTP

	Reference
	Boot Logic Implementation
	U-Boot Environment Variables
	Barebox Bootchooser Framework

	eMMC Boot Partitions
	Bootloader Offsets

