
Coprocessor Application Manual

PHYTEC Messtechnik GmbH

2025 年 04 月 08 日

Contents

1 Internal vs. External Coprocessor 3

2 Use Cases 5
2.1 Energy Constrained Applications . 5
2.2 Time-Critical Communication . 5
2.3 Sensors and Real-Time . 5
2.4 Interface Virtualization . 5

3 Overview of Technologies 7
3.1 Real-Time Operating Systems (RTOS) and Development Frameworks 7
3.2 Additional Software Stacks . 8

4 Application Architectures 11
4.1 Typical Usage . 11
4.2 VirtIO . 12
4.3 RPmsg + Overlaying Protocol . 12

5 Getting Started 13
5.1 Starting the Coprocessor via Remoteproc . 13
5.2 Starting the Coprocessor via Bootloader . 14
5.3 Starting the Coprocessor via Debug Probe . 14
5.4 Accessing the serial console . 14

6 Examples and Resources 15
6.1 Hello World . 15
6.2 OpenAMP using resource table . 16
6.3 Other Examples . 20

7 Current Problems 21

i

ii

Coprocessor Application Manual Doc-rev.: imx8mm-pd25.1.0

警告

This manual is a draft version and is currently work in progress. It will undergo significant changes
over time.

We value your feedback, questions, and suggestions and encourage you to open an issue or pull request
in the linked repository to get in contact.

Coprocessor Application Manual
Document Title Coprocessor Application Manual
Document Type Generic Application Guide
Release Date XXXX/XX/XX

This manual applies to all Phytec releases from kernel version x.

Most modern SoCs include one or more coprocessors beside an application processor. In most cases the
application processor runs Linux, while the coprocessor may run an RTOS. This manual goes into detail
how to utilize the coprocessor efficiently for projects.

The manual explains generic principles and applies those principles in examples for a specific platform and
tools. It gives an introduction into coprocessor software stacks and RTOS like Zephyr, MCUXpresso and
OpenAMP

For now this manual is focused on the NXP i.MX platform, but an attempt is made to keep the manual as
generic as possible.

Contents 1

Coprocessor Application Manual Doc-rev.: imx8mm-pd25.1.0

Contents 2

CHAPTER 1

Internal vs. External Coprocessor

A coprocessor can be internal or external (Of the application processors SoC). Both have their advantages
and disadvantages. Advantages on internal coprocessors are for example a more simple firmware update
management, a more efficient communication between the coprocessor and the application processor and a
probably more inexpensive PCB design. External coprocessors have, for example, the advantages of more
interfaces in addition to the ones of the application processor, and they are starting up directly, not depending
on the application processor.

This manual focuses on internal coprocessors of the PHYTEC SoMs.

3

Coprocessor Application Manual Doc-rev.: imx8mm-pd25.1.0

Internal vs. External Coprocessor 4

CHAPTER 2

Use Cases

There are several use cases for coprocessors in embedded systems. Almost every time-critical task that
cannot be handled by the application processor can be offloaded to a coprocessor.

Here are some more explicit use-case examples to give an idea of the possibilities:

2.1 Energy Constrained Applications
For energy constrained applications, it may be beneficial to reduce the active time of the entire SoC to
conserve power. In such cases, the application processor can be put into sleep mode while the coprocessor
remains active to, for example, monitor I2C communication and wake up the application processor upon
receiving a specific command.

2.2 Time-Critical Communication
Some protocols may require sending or receiving data in real-time. If there is no hardware IP-core that is
capable of handling the desired protocol, the coprocessor could help out to support it through building it in
software.

2.3 Sensors and Real-Time
Some applications may require a sensor to be read in a time-critical manner (e.g. an accelerometer) to detect
small value changes in a short time frame. This can be done by a coprocessor to ensure that the sensor is
read at the right time. The data can be buffered and fed to the application processor if it has time to process
the data.

2.4 Interface Virtualization
On SoCs like the i.MX9 series there is the FLEXIO interface (compare RPi PIO, Microchip CLC). Received
data on this interface needs to be processed in a time-critical manner because it is lacking a FIFO buffer. If
serial data with higher speeds is received, the application processor may need to process too many interrupts.

5

Coprocessor Application Manual Doc-rev.: imx8mm-pd25.1.0

That could slow down other running applications. Another problem is the interrupt latency. The application
processor could possibly lose data frames.

The coprocessor can be used to read the data from the interface, buffer it and send it to the application
processor when it has time to process it.

Use Cases 6

CHAPTER 3

Overview of Technologies

3.1 Real-Time Operating Systems (RTOS) and Development Frame-
works

There are multiple RTOS and SDKs available that can be used on coprocessors.

3.1.1 Zephyr
Zephyr is an Open Source and vendor neutral RTOS that is is governed by the Linux Foundation and
supported by various companies and a large community. It is designed to be small and efficient and is
suitable for a wide range of devices from simple embedded devices to complex SoCs. The key feature is the
platform independence, which allows developing applications with a generic API that can run on multiple
platforms without modification.

It supports a wide range of SoCs and boards from various manufacturers based on different processor archi-
tectures. There is also support for a lot of different peripherals and interfaces, as well as a wide range of
communication protocols. (e.g. TCP/IP stack, Bluetooth, CAN, USB, etc.)

Zephyr supports the coprocessor on multiple phyBOARDs, including the phyBOARD Pollux (i.MX8MP),
Polis (i.MX8MM), Nash (i.MX93), Electra (AM64x) and Lyra (AM62x).

It should be mentioned, that not all hardware features are available in Zephyr yet. The support is constantly
being expanded through NXP and the Zephyr community. Despite this PHYTEC recommends using Zephyr
for new projects because of its many advantages.

You can find more information about using Zephyr in the Zephyr Documentation website.

提示

Please reach out to us if there is any feature missing in Zephyr that you need for your project. We will
try our best to get that feature implemented.

7

https://docs.zephyrproject.org/latest/introduction/index.html

Coprocessor Application Manual Doc-rev.: imx8mm-pd25.1.0

3.1.2 MCUXpresso SDK (NXP)
The MCUX SDK is a software development kit for NXP microcontrollers and microprocessors. It provides
a comprehensive set of peripheral drivers, middlewares and examples for all NXP Platforms. MCUX gives
the possibility to use different RTOS like FreeRTOS, Azure RTOS or even using it BareMetal.

If Zephyr is not suitable for your project (e.g. because of missing features), MCUX SDK is the alternative.
You can use it either with the MCUX SDK or repository-managed via make and cpp.

Here are some resources to get started with MCUX:

• MCUXpresso SDK

• PHYTEC MCUX-SDK

• MCUXpresso VS-Code IDE

• MCUXpresso IDE

3.2 Additional Software Stacks

3.2.1 OpenAMP
The OpenAMP Project ”seeks to standardize the interactions between operating environments in a hetero-
geneous embedded system through open source solutions for Asymmetric MultiProcessing (AMP).”

This introduction explains the main components and terms, the OpenAMP documentation goes into further
detail. OpenAMP is available in Linux as well as in RTOS (e.g. Zephyr) and Vendor SDKs (e.g. NXP
MCUX, TI SDK, STM32Cube).

In general, OpenAMP is a framework that allows communication between asymmetric processor cores inside
a SoC via shared memory.

A differentiation is made between a master core (mostly the application processor) and one or more remote
cores (coprocessors). The master core has to load the firmware on the remote core, start it and prepare
shared memory regions for communication.

The OpenAMP framework consists of two main components:

remoteproc

The remoteproc framework is used to control the life cycle of a remote processor. It is responsible for loading
the firmware, starting and stopping the remote processor and managing the resources of both cores. The
remoteproc documentation on Kernel.org goes into further technical details.

RPMsg

RPMsg is a messaging protocol that is used to exchange messages between the master core and remote cores.
It is built on top of VirtIO and Virtqueue and uses the shared memory regions prepared by remoteproc to
exchange messages.

The communication stack is consisting of several protocol layers, similar to the OSI model:

Transport Layer (3):
RPMsg

MAC Layer (2):
VirtIO, Virtqueue, Vring

Physical Layer (1):
Shared Memory, Inter-core Interrupts e.g. via Messaging Unit (MU)

Overview of Technologies 8

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK
https://github.com/phytec/mcux-sdk
https://www.nxp.com/design/design-center/training/TIP-GETTING-STARTED-WITH-MCUXPRESSO-FOR-VS-CODE
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
http://openampproject.org
https://openamp.readthedocs.io/en/latest/openamp/index.html
https://docs.kernel.org/staging/remoteproc.html

Coprocessor Application Manual Doc-rev.: imx8mm-pd25.1.0

Normally VirtIO is used to exchange messages between virtual machines in a hypervisor environment. In the
context of OpenAMP, VirtIO is used to exchange messages between the master core and remote cores while
being very efficient. The Virtqueue is underlying VirtIO and organizes the messages in a circular buffer.
The Vring is the specific implementation of the buffer inside the Virtqueue.

The rpmsg documentation on Kernel.org goes into further technical details.

Requirements

Shared Memory
To exchange messages between the cores, a shared memory region is required.

Interrupts
Minimum set of one interrupt line per communicating core. This interrupt is often implemented in
hardware blocks of the SoC, e.g. the ”Messaging Unit (MU)” on the NXP i.MX8MP.

Resource Table
The resource table is a data structure that describes the shared memory regions and the VirtIO devices
that are used for communication between the cores. It is used by the remoteproc framework to prepare
the shared memory regions and the VirtIO devices. Ensure that the resource table is correctly included
in the firmware binary of the remote core. (e.g. in Zephyr use CONFIG_OPENAMP_RSC_TABLE=y)

3.2.2 Protocol Buffers

Overview of Technologies 9

https://docs.kernel.org/staging/rpmsg.html

Coprocessor Application Manual Doc-rev.: imx8mm-pd25.1.0

Overview of Technologies 10

CHAPTER 4

Application Architectures

4.1 Typical Usage

图 1: Typical Application Architecture with OpenAMP (source: OpenAMP Whitepaper)

A typical application architecture when using OpenAMP is using two cores. One application processor
(typically running Linux) while the coprocessor is processing time-critical tasks.

11

https://www.openampproject.org/docs/whitepapers/Introduction_to_OpenAMPlib_v1.1a.pdf

Coprocessor Application Manual Doc-rev.: imx8mm-pd25.1.0

4.2 VirtIO

4.3 RPmsg + Overlaying Protocol
Sometimes it can be necessary to use an overlaying protocol on top of RPMsg to exchange more complex
data structures.

This could be done with using a protocol like Protocol Buffers or Flat Buffers to serialize and deserialize the
data structures.

Application Architectures 12

https://developers.google.com/protocol-buffers
https://google.github.io/flatbuffers/

CHAPTER 5

Getting Started

There are multiple ways to get started with using a coprocessor.

First of all you need to decide which RTOS you want to use.

If you want to use Zephyr, you can use the Zephyr Getting Started Guide.

备注

When building a Zephyr project / sample for a SoC, the board naming can be confusing. The naming
convention is <board>/<soc>/<core>. For example, to build a Zephyr project for the phyBOARD Pollux
(i.MX8MP) with the M7 core, the board name is phyboard_pollux/mimx8ml8/m7.

When compiling the firmware, you’ll get two binary files. One .elf file for starting the remote processor via
remoteproc, which includes the resource table, and one .bin file for starting the remote processor via the
bootloader.

5.1 Starting the Coprocessor via Remoteproc
To start a remote processor via remoteproc, you need to place the firmware into the /lib/firmware directory
on the target.

This can be done using SCP (e.g., for development), by copying the file to the SD card, or by including it
in the Yocto build (e.g., for production use).

Make sure the devicetree overlay that enables remoteproc support is activated. You can find more information
about how to activate the devicetree overlay in the BSP manual for your platform.

target:~$ echo /lib/firmware/{your_firmware}.elf > /sys/class/remoteproc/remoteproc0/firmware
target:~$ echo start > /sys/class/remoteproc/remoteproc0/state

13

https://docs.zephyrproject.org/latest/getting_started/index.html

Coprocessor Application Manual Doc-rev.: imx8mm-pd25.1.0

提示

If your device has multiple coprocessors, please make sure you use the correct remoteproc device.

5.2 Starting the Coprocessor via Bootloader
Starting the Coprocessor via the bootloader is platform specific. You can find more information in the BSP
manual for your platform.

Using this method can be useful, if you want to have the coprocessor running before the application processor
boots up, for example for applications that need to have a fast response time on startup.

Here is the manual for the i.MX8MP for example: Running the M7 Core

5.3 Starting the Coprocessor via Debug Probe
It is possible to start the coprocessor via a debug probe like J-Link or OpenOCD. This is useful for debugging
the firmware on the coprocessor, or for starting up the coprocessor in a development environment.

On most PHYTEC boards, you can use a PEB-EVAL-01 shield to connect the debug probe to the board via
a 20-pin JTAG connector.

When using Zephyr you can simply use the command

host:zephyrproject/zephyr$ west debug

to start gdb and load / start the firmware on the coprocessor.

警告

Please note that it is not possible to use inter processor communication via RPMsg when not starting
the coprocessor via remoteproc! This is because remoteproc prepares Linux and the shared memory for
communication!

This is especially impractical when you want to debug your coprocessor firmware via a debug probe, if
your system requires the use of communication between the cores.

5.4 Accessing the serial console
The coprocessor firmware can output messages via a serial console. It differs from platform to platform how
to gain access to the serial console.

For example, on the i.MX8 platform, you’ll get a serial console via the debug USB port on the board. On
i.MX93 (on segin board) on the other hand, you can access it via RS232 on the PEB-EVAL-01.

It’s recommended to take a look into the corresponding BSP or Zephyr manual for your platform to find out
how to access the serial console.

Zephyr offers a shell backend to be able to access a shell via RPMsg. This can help for debugging purposes
or to send commands to the coprocessor. Take a look here: OpenAMP using resource table

The easiest way to communicate on the Linux side through RPMsg is via the tty-rpmsg driver. This driver
creates a tty device in /dev that can be used to send and receive messages to the coprocessor.

Getting Started 14

https://phytec.github.io/doc-bsp-yocto/bsp/imx8/imx8mp/head.html#running-mcore-examples

CHAPTER 6

Examples and Resources

This section gives an overview of examples and resources that can be used to get started with a coprocessor.

The examples are focused on the NXP i.MX platform and Zephyr for now, but the principles can be applied
to other platforms as well.

Resources:

• NXP AN5317 - Loading code to Coprocessor

• Zephyr IPC Samples

6.1 Hello World
The hello_world sample is a simple example Zephyr project, that prints ”Hello World!” to the serial console.

6.1.1 Run the Sample
1. Make sure the devicetree overlay imx8mp-phycore-rpmsg.dtbo is activated, the BSP manual for your

platform explains how to activate this.

2. Restart the target and execute in U-Boot:

u-boot=> run prepare_mcore

3. Save the environment in U-Boot in order to enable the m-core on every boot by default. Executing
saveenv twice will save the environment to the redundant MMC partition as well.

u-boot=> saveenv
Saving Environment to MMC... Writing to MMC(1)... OK
u-boot=> saveenv
Saving Environment to MMC... Writing to redundant MMC(1)... OK

3. The target will now boot and you can build and flash the Zephyr application with:

15

https://www.nxp.com/docs/en/application-note/AN5317.pdf
https://docs.zephyrproject.org/latest/samples/subsys/ipc/ipc.html
https://docs.zephyrproject.org/latest/samples/hello_world/README.html

Coprocessor Application Manual Doc-rev.: imx8mm-pd25.1.0

host:zephyrproject/zephyr$ west build -b phyboard_pollux/mimx8ml8/m7 samples/hello_world -p

4. Zephyr should now boot with

target_m7:~$ *** Booting Zephyr OS build v3.7.0 ***
Hello World! phyboard_pollux/mimx8ml8/m7

6.2 OpenAMP using resource table
The openamp_rsc_table sample ”demonstrates how to use OpenAMP with Zephyr based on a resource
table. It is designed to respond to [..]” the rpmsg client and rpmsg tty samples in the Linux Kernel. This
sample demonstrates communication between Zephyr (coprocessor) and Linux (application processor) using
OpenAMP. It creates the two RPMsg endpoints:

rpmsg-client-sample
Demonstrates generic RPMsg message exchange (Ping-pong) between Zephyr and Linux.

rpmsg-tty
A TTY service that virtualizes a serial connection at /dev/rpmsg-tty in Linux, facilitating data ex-
change with Zephyr over this virtualized interface.

6.2.1 Prepare Linux
The example has been tested with the imx8mp and the BSP-Yocto-NXP-i.MX8MP-PD24.1.0. However,
some modifications are necessary to be able to communicate in between Zephyr and Linux with RPMsg.
The devicetree overlay that enables rpmsg has to be enabled. You can edit this line directly in bootenv.txt
in the boot partition.

列表 1: Changes in ’bootenv.txt’
+++ b/recipes-bsp/bootenv/phytec-bootenv/phyboard-pollux-imx8mp-3/bootenv.txt
@@ -1 +1 @@
-overlays=conf-imx8mp-phyboard-pollux-peb-av-10.dtbo
+overlays=conf-imx8mp-phyboard-pollux-peb-av-10.dtbo#conf-imx8mp-phycore-rpmsg.dtbo

列表 2: Changes in the devicetree overlay ’imx8mp-phycore-
rpmsg.dtbo’

+++ b/arch/arm64/boot/dts/freescale/imx8mp-phycore-rpmsg.dtso
@@ -14,11 +14,11 @@

core-m7 {
compatible = "fsl,imx8mn-cm7";
clocks = <&clk IMX8MP_CLK_M7_DIV>;

- mboxes = <&mu 0 1>,
- <&mu 1 1>,
- <&mu 3 1>;
+ mboxes = <&mu 0 0>,
+ <&mu 1 0>,
+ <&mu 3 0>;

mbox-names = "tx", "rx", "rxdb";
- memory-region = <&vdevbuffer>, <&vdev0vring0>, <&vdev0vring1>, <&rsc_table>;
+ memory-region = <&vdevbuffer>, <&vdev0vring0>, <&vdev0vring1>;

};

reserved-memory {
(续下页)

Examples and Resources 16

https://docs.zephyrproject.org/latest/samples/subsys/ipc/openamp_rsc_table/README.html
https://elixir.bootlin.com/linux/latest/source/samples/rpmsg/rpmsg_client_sample.c
https://elixir.bootlin.com/linux/latest/source/drivers/tty/rpmsg_tty.c
https://www.phytec.de/bsp-download/?bsp=BSP-Yocto-NXP-i.MX8MP-PD24.1.0

Coprocessor Application Manual Doc-rev.: imx8mm-pd25.1.0

(接上页)
@@ -27,29 +27,31 @@ reserved-memory {

#size-cells = <2>;

vdev0vring0: vdev0vring0@55000000 {
- no-map;
+ compatible = "shared-dma-pool";

reg = <0 0x55000000 0 0x8000>;
+ no-map;

};

vdev0vring1: vdev0vring1@55008000 {
- no-map;
+ compatible = "shared-dma-pool";

reg = <0 0x55008000 0 0x8000>;
+ no-map;

};

6.2.2 Prepare Zephyr
The sample needs some board specific settings and a devicetree overlay for the phyBOARD Pollux. This
will be upstreamed soon and maybe it is possible to make the Zephyr sample fully generic.

You can see a branch with the required changes here.

6.2.3 Run the Sample
1. Make sure the devicetree overlay imx8mp-phycore-rpmsg.dtbo is activated, the BSP manual for your

platform explains how to activate this.

2. Restart the target and execute in U-Boot:

u-boot=> run prepare_mcore

3. Build Zephyr and copy the firmware to /lib/firmware on the target:

host:zephyrproject/zephyr$ west build -b phyboard_pollux/mimx8ml8/m7 samples/subsys/ipc/openamp_rsc_
↪→table/ -p

4. Start the Zephyr application with remoteproc:

root@phyboard-pollux-imx8mp-3:~# echo stop > /sys/class/remoteproc/remoteproc0/state
root@phyboard-pollux-imx8mp-3:~# echo /lib/firmware/zephyr_openamp_rsc_table.elf > /sys/class/
↪→remoteproc/remoteproc0/firmware
root@phyboard-pollux-imx8mp-3:~# echo start > /sys/class/remoteproc/remoteproc0/state

4. Zephyr should now boot now. The kernel module rpmsg_client_sample should load automatically and
respond to the running m-core.

target_m7:~$ *** Booting Zephyr OS build v4.0.0-870-g6d87bd65aebf ***
I: Starting application threads!
I: OpenAMP[remote] Linux responder demo started
D: mailbox_notify: msg received
I: OpenAMP[remote] Linux sample client responder started
D: mailbox_notify: msg received
I: OpenAMP[remote] Linux TTY responder started
D: mailbox_notify: msg received

(续下页)

Examples and Resources 17

https://github.com/PHYTEC-Messtechnik-GmbH/sdk-zephyr/tree/WIP/j.remmert%40phytec.de/openamp_rsc_pollux

Coprocessor Application Manual Doc-rev.: imx8mm-pd25.1.0

(接上页)

: platform_ipm_callback: msg received from mb 0
I: [Linux sample client] incoming msg 1: hello world!
D: mailbox_notify: msg received
D: platform_ipm_callback: msg received from mb 0
I: [Linux sample client] incoming msg 1: hello world!
D: mailbox_notify: msg received

5. If the the kernel Module does not load automatically, you can manually load it:

target:~$ modprobe rpmsg_client_sample
target:~$ dmesg | tail # Check module messages
target:~$ modprobe -u rpmsg_client_sample # Unload Kernel module

Serial Communication

Once the demo is running, it opens two serial devices (/dev/ttyRPMSG0, /dev/ttyRPMSG1), one to send/receive
any messages to Zephyr and one for the Zephyr shell backend.

Open the tty channel
root@phyboard-pollux-imx8mp-3:~# cat /dev/ttyRPMSG1 &
[3] 504
root@phyboard-pollux-imx8mp-3:~# echo "Hello Zephyr" >/dev/ttyRPMSG1
root@phyboard-pollux-imx8mp-3:~# TTY 0x0402: Hello Zephyr
TTY 0x0402: Hello Zephyr

Open the Zephyr shell with micocom
root@phyboard-pollux-imx8mp-3:~# microcom /dev/ttyRPMSG0

clear device devmem help history kernel rem resize
retval shell
ipc:~$

备注

Remoteproc ensures to register the resource table and the RPMsg service. Running firmware via debug
probe is not possible when using RPMsg.

警告

Remoteproc only reads firmware files from the /lib/firmware directory! If you try to load a binary from
another location errors will occur!

6.2.4 Console Output Linux
Stop a running m-core
root@phyboard-pollux-imx8mp-3:~# echo stop > /sys/class/remoteproc/remoteproc0/state
[18375.572034] imx-rproc core-m7: Not in wfi, force stopped
[18375.577423] remoteproc remoteproc0: stopped remote processor imx-rproc

Load the firmware
root@phyboard-pollux-imx8mp-3:~# echo /lib/firmware/zephyr_openamp_rsc_table.elf > /sys/class/remoteproc/

(续下页)

Examples and Resources 18

Coprocessor Application Manual Doc-rev.: imx8mm-pd25.1.0

(接上页)
↪→remoteproc0/firmware

Start the m-core
root@phyboard-pollux-imx8mp-3:~# echo start > /sys/class/remoteproc/remoteproc0/state
[18402.215721] remoteproc remoteproc0: powering up imx-rproc
[18402.221215] remoteproc remoteproc0: Direct firmware load for /lib/firmware/zephyr.elf failed with error -
↪→2
[18402.230900] remoteproc remoteproc0: Falling back to sysfs fallback for: /lib/firmware/zephyr.elf
[18402.243066] remoteproc remoteproc0: Booting fw image /lib/firmware/zephyr.elf, size 1402364
[18402.252283] rproc-virtio rproc-virtio.3.auto: assigned reserved memory node vdevbuffer@55400000
[18402.262788] virtio_rpmsg_bus virtio0: rpmsg host is online
[18402.268484] rproc-virtio rproc-virtio.3.auto: registered virtio0 (type 7)
[18402.275367] virtio_rpmsg_bus virtio0: creating channel rpmsg-tty addr 0x400
[18402.276433] remoteproc remoteproc0: remote processor imx-rproc is now up
[18402.282735] virtio_rpmsg_bus virtio0: creating channel rpmsg-client-sample addr 0x401
[18402.297625] rpmsg_client_sample virtio0.rpmsg-client-sample.-1.1025: new channel: 0x401 -> 0x401!
[18402.308941] virtio_rpmsg_bus virtio0: creating channel rpmsg-tty addr 0x402
[18402.320915] rpmsg_client_sample virtio0.rpmsg-client-sample.-1.1025: incoming msg 1 (src: 0x401)
[18402.341810] rpmsg_client_sample virtio0.rpmsg-client-sample.-1.1025: incoming msg 2 (src: 0x401)

6.2.5 Debugging

列表 3: Print resource table in Linux
root@phyboard-pollux-imx8mp-3:~# cat /sys/kernel/debug/remoteproc/remoteproc0/resource_table
Entry 0 is of type vdev

ID 7
Notify ID 0
Device features 0x1
Guest features 0x1
Config length 0x0
Status 0x7
Number of vrings 2
Reserved (should be zero) [0][0]

Vring 0
Device Address 0x55000000
Alignment 16
Number of buffers 8
Notify ID 0
Physical Address 0x0

Vring 1
Device Address 0x55008000
Alignment 16
Number of buffers 8
Notify ID 1
Physical Address 0x0

列表 4: Print related memory areas in Linux:
root@phyboard-pollux-imx8mp-3:~# cat /sys/kernel/debug/remoteproc/remoteproc0/resource_table
Entry 0 is of type vdev

ID 7
Notify ID 0

(续下页)

Examples and Resources 19

Coprocessor Application Manual Doc-rev.: imx8mm-pd25.1.0

(接上页)
Device features 0x1
Guest features 0x1
Config length 0x0
Status 0x7
Number of vrings 2
Reserved (should be zero) [0][0]

Vring 0
Device Address 0x55000000
Alignment 16
Number of buffers 8
Notify ID 0
Physical Address 0x0

Vring 1
Device Address 0x55008000
Alignment 16
Number of buffers 8
Notify ID 1
Physical Address 0x0

6.3 Other Examples
The following examples exist in Zephyr, however, they are specific to SoCs that have multiple instances
of Zephyr running in the same SoC. They are partly related to Zephyrs ipc_service and not suitable for
communication with Linux.

OpenAMP Sample

sample builds different images for two targets running Zephyr. Both targets setup virtqueue and
virtio and communicate with each other via RPMsg. This sample is mainly used to evaluate
SoCs with two Cortex M devices and can not be used with Linux.

openamp-system-reference

Several samples for both platforms, Linux and Zephyr that demonstrate different aspects of
OpenAMP.

Samples in ipc_service/

Examples related to Zephyr ipc_service subsystem. Note that not all of those examples may be
applicable to heterogeneous systems with one core running Linux and the other Zephyr.

Examples and Resources 20

https://docs.zephyrproject.org/latest/services/ipc/ipc_service/ipc_service.html
https://docs.zephyrproject.org/latest/samples/subsys/ipc/openamp/README.html#openamp
https://github.com/OpenAMP/openamp-system-reference
https://docs.zephyrproject.org/latest/samples/subsys/ipc/ipc.html

CHAPTER 7

Current Problems

This section lists current problems that need work.

1. Shell not working in Zephyr for Linux SoCs.

There may be a problem with interrupts and nxp deactivated the shell for the imx8qm boards. https:
//github.com/zephyrproject-rtos/zephyr/pull/79428

21

https://github.com/zephyrproject-rtos/zephyr/pull/79428
https://github.com/zephyrproject-rtos/zephyr/pull/79428

	Internal vs. External Coprocessor
	Use Cases
	Energy Constrained Applications
	Time-Critical Communication
	Sensors and Real-Time
	Interface Virtualization

	Overview of Technologies
	Real-Time Operating Systems (RTOS) and Development Frameworks
	Zephyr
	MCUXpresso SDK (NXP)

	Additional Software Stacks
	OpenAMP
	remoteproc
	RPMsg
	Requirements

	Protocol Buffers

	Application Architectures
	Typical Usage
	VirtIO
	RPmsg + Overlaying Protocol

	Getting Started
	Starting the Coprocessor via Remoteproc
	Starting the Coprocessor via Bootloader
	Starting the Coprocessor via Debug Probe
	Accessing the serial console

	Examples and Resources
	Hello World
	Run the Sample

	OpenAMP using resource table
	Prepare Linux
	Prepare Zephyr
	Run the Sample
	Console Output Linux
	Debugging

	Other Examples

	Current Problems

